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It has been shown that a best rank-R approximation of an order-

k tensor may not exist when R� 2 and k � 3. This poses a serious

problem to data analysts using tensor decompositions. It has been

observed numerically that, generally, this issue cannot be solved

by consecutively computing and subtracting best rank-1 approx-

imations. The reason for this is that subtracting a best rank-1

approximation generally does not decrease tensor rank. In this

paper, we provide a mathematical treatment of this property for

real-valued 2 × 2 × 2 tensors, with symmetric tensors as a spe-

cial case. Regardless of the symmetry, we show that for generic

2 × 2 × 2 tensors (which have rank 2 or 3), subtracting a best rank-

1 approximation results in a tensor that has rank 3 and lies on the

boundary between the rank-2 and rank-3 sets. Hence, for a typical

tensor of rank 2, subtracting a best rank-1 approximation increases

the tensor rank.
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1. Introduction

Tensors of order d are defined on the outer product of d linear spaces, S�, 1� � � d. Once bases of

spaces S� are fixed, they can be represented by d-way arrays. For simplicity, tensors are usually assim-

ilated with their array representation. We assume throughout the following notation: underscored

bold uppercase for tensors e.g. X, bold uppercase for matrices e.g. T, bold lowercase for vectors e.g. a,

calligraphic for sets e.g. S , and plain font for scalars e.g. Xijk, Tij or ai. In this paper, we consider only

third-order tensors. The three spaces of a third-order tensor are also referred to as the three “modes".

Let X be a third-order tensor defined on the tensor product S1 ⊗ S2 ⊗ S3. If a change of bases is

performed in the spaces S1, S2, S3 by invertible matrices S, T, U, then the tensor representation X is

transformed into

X̃ = (S, T,U) · X , (1.1)

whose coordinates are given by X̃ijk = ∑
pqr Sip Tjq Ukr Xpqr . This is known as themultilinearity property

enjoyed by tensors. Matrices, which can be associated with linear operators, are tensors of order 2.

The multilinear transformation (1.1) is also denoted as

X̃ = X •1 S •2 T •3 U , (1.2)

where •� denotes the multiplication (or contraction) operator in the �th mode of X, and S, T, U are

contracted in their second index. Note that thematrixmultiplication STUT can be denoted as T •1 S •2

U = T •2 U •1 S. For two contractionswithmatrices in the samemode,wehave the ruleX •� T •� S =
X •� (ST), see e.g. [9, Section 2].

The rank of a tensor X is defined as the smallest number of decomposable tensors whose sum

equals X, i.e. the smallest R such that

X =
R∑

r=1

ar ⊗ br ⊗ cr . (1.3)

Hence a rank-1 tensor X is the outer product of vectors a, b, c and has entries Xijk = aibjck . The

decomposition of a tensor into a sum of outer products of vectors and the corresponding notion of

tensor rank were first introduced and studied by [14,15].

Tensors play a wider and wider role in numerous application areas including blind source sepa-

ration techniques for Telecommunications [26,27,6,11,8], Arithmetic Complexity [21,34,1,32], or Data

Analysis [13,2,28,20]. In some applications, tensors may be symmetric only in some modes, or may

not be symmetric nor have equal dimensions. In most applications, the decomposition of a tensor

into a sum of rank-1 terms is relevant, since tensors entering the models to fit have a reduced rank.

For example, such a tensor decomposition describes the basic structure of fourth-order cumulants of

multivariate data on which a lot of algebraic methods for Independent Component Analysis are based

[3,10]. For an overview of applications of tensor decompositions, refer to [18].

An important advantage of using tensor decompositions of order 3 and higher, is that the decom-

position is rotationally unique under mild conditions [21,32]. This is not the case for most matrix

decompositions e.g. Principal Component Analysis. However, the manipulation of tensors remains

difficult, because of major differences between their properties when we go from second order to

higher orders. We mention the following: (i) tensor rank often exceeds dimensions, (ii) tensor rank

can be different over the real and complex fields, (iii) maximal tensor rank is not generic, and is

still unknown in general, (iv) generic tensor rank may not have a single value over the real field, (v)

computing the rank of a tensor is very difficult, (vi) a tensormay not have a best rank-R approximation

for R � 2. For (i)–(v), see e.g. [22,12,7]. For (iv), see e.g. [36,37]. For (vi), see e.g. [29–31,12,19,33]. A

discussion specifically focussed on symmetric tensors can be found in [7].

In [12] it is shown that (vi) holds on a set of positive measure. It is recalled in [7,12] that any tensor

has a best rank-1 approximation. However, it has been observed numerically in [17, Section 7] that a

best or “good" rank-R approximation cannot be obtained by consecutively computing and subtracting

R best rank-1 approximations. The reason for this is that subtracting a best rank-1 approximation

generally does not decrease tensor rank. Hence, the deflation technique practiced for matrices (via the
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Singular Value Decomposition) cannot generally be extended to higher-order tensors. A special case

where this deflation technique works is when the tensor is diagonalizable by orthonormal multilinear

transformation; see [17, Section 7].

In thispaper,weprovideamathematical treatmentof the (in)validityof a rank-1deflationprocedure

for higher-order tensors. We consider 2 × 2 × 2 tensors over the real field. For such a tensor X, let the

frontal slabs be denoted as X1 and X2. Our main result is for generic tensors X, which have rank 2 if

X2X
−1
1 has distinct real eigenvalues, and rank 3 if X2X

−1
1 has complex eigenvalues. We show that for

generic X, subtraction of a best rank-1 approximation Y yields a tensor Z = X − Y of rank 3. Hence,

for a typical X of rank 3 this does not affect the rank, and for a typical X of rank 2 this has increased the

rank. In fact, we show that Z lies on the boundary between the rank-2 and rank-3 sets, i.e. Z2Z
−1
1 has

identical real eigenvalues. The result that subtraction of a best rank-1 approximation yields identical

eigenvalues is new and expands the knowledge of the topology of tensor rank. Also, we show that the

same result holds for symmetric 2 × 2 × 2 tensors. Based on numerical experiments we conjecture

that the results can be extended to p × p × 2 tensors over the real field.

The above contributions are new to the literature on best rank-1 approximation of higher-order

tensors. The latter includes best rank-1 approximation algorithms [9,38,17], conditions under which

the best rank-1 approximation is equal to the best symmetric rank-1 approximation [24], and a relation

between the best symmetric rank-1 approximation and the notions of eigenvalues and eigenvectors

of a symmetric tensor [5,25].

Thispaper is organizedas follows. In Section2,we introduce thebest rank-1approximationproblem

for third-order tensors, and state first-order conditions for the optimal solution. Next, we consider

2 × 2 × 2 tensors. Section 3 contains rank criteria and orbits for 2 × 2 × 2 tensors. In Section 4, we

present examples and general results for subtraction of a best rank-1 approximation from a 2 × 2 × 2

tensor. In Sections 5–7, we discuss the special case of symmetric tensors. Section 5 provides first-order

conditions for the best symmetric rank-1 approximation of a symmetric third-order tensor. Section 6

contains rank criteria and orbits of symmetric 2 × 2 × 2 tensors. These results are used in Section 7,

when studying the subtraction of a best symmetric rank-1 approximation froma symmetric 2 × 2 × 2

tensor. Section 8 contains a discussion of our results. The proofs of our main results are contained in

appendices.

2. Best rank-1 approximation

We consider the problem of finding a best rank-1 approximation to a given third-order tensor

X ∈ Rd1×d2×d3 , i.e.

minx∈Rd1 ,y∈Rd2 ,z∈Rd3 ||X − x ⊗ y ⊗ z||2 , (2.1)

where || · || denotes the Frobenius norm, i.e. ||X||2 = ∑
ijk |Xijk|2. Since the set of rank-1 tensors is

closed, problem (2.1) is guaranteed to have an optimal solution [12, Proposition 4.2]. Note that the

vectors x, y, z of the rank-1 tensor (x ⊗ y ⊗ z) are determined up to scaling. One could impose two of

the vectors to be unit norm.

Let �(x, y, z) = ||X − x ⊗ y ⊗ z||2. Then � can be written as

� = ||X||2 − 2X •1 xT •2 yT •3 zT + ||x||2||y||2||z||2 . (2.2)

Hence, the minimization problem (2.1) is equivalent to minimizing (2.2). Using this fact, and setting

the gradients of � with respect to the vectors x, y, z equal to zero, we obtain the following equations:

x = X •2 yT •3 zT

||y||2||z||2 , y = X •1 xT •3 zT

||x||2||z||2 , z = X •1 xT •2 yT

||x||2||y||2 . (2.3)

Substituting

x = X •2 yT •3 zT

||y||2||z||2 , (2.4)

into the last two equations of (2.3), we obtain
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(X •3 zT ) •1 (X •3 zT ) •2 yT = λ y , (X •2 yT ) •1 (X •2 yT ) •3 zT = μ z , (2.5)

where λ = ||x||2||y||2||z||4 and μ = ||x||2||y||4||z||2. Hence, y is an eigenvector of the matrix (X •3

zT ) •1 (X •3 zT ) and z is an eigenvector of the matrix (X •2 yT ) •1 (X •2 yT ).
Substituting (2.4) into (2.2) yields

� = ||X||2 − (X •2 yT •3 zT ) •1 (X •2 yT •3 zT )

||y||2 ||z||2 = ||X||2 − ||X •2 yT •3 zT ||2
||y||2 ||z||2 . (2.6)

Hence, a best rank-1 approximation (x ⊗ y ⊗ z) of X is found by minimizing (2.6) over (y, z) and

obtaining x as (2.4). The stationary points (y, z) are given by (2.5), which can also be written as

(X •2 yT •3 zT ) •1 (X •3 zT )= ||X •2 yT •3 zT ||2
||y||2 y , (2.7)

(X •2 yT •3 zT ) •1 (X •2 yT )= ||X •2 yT •3 zT ||2
||z||2 z . (2.8)

Next, we consider transformations of the best rank-1 approximation. The following well-known

result states that a best rank-1 approximation is preserved under orthonormal multilinear transfor-

mation.

Lemma 2.1. Let S, T,U be orthonormal matrices. If a tensor X admits Y as a best rank-1 approximation,

then (S, T,U) · Y is a best rank-1 approximation of (S, T,U) · X.

Proof. Let Y = x ⊗ y ⊗ z be a best rank-1 approximation of X, and let X̃ = (S, T,U) · X. Since or-

thonormal transforms leave the Frobenius norm invariant, we obtain the following analogue of (2.2):

||X̃ − x̃ ⊗ ỹ ⊗ z̃||2=||X̃||2 − 2 X̃ •1 x̃T •2 ỹT •3 z̃T + ||x̃||2||ỹ||2||z̃||2

=||X||2 − 2X •1 (x̃TS) •2 (ỹTT) •3 (z̃TU) + ||ST x̃||2||TT ỹ||2||UT z̃||2 .

(2.9)

Hence, since (x, y, z) is a minimizer of (2.2), it follows that (Sx, Ty, Uz) is a minimizer of (2.9). In other

words, a best rank-1 approximation of X̃ is given by (Sx ⊗ Ty ⊗ Uz). �

As we will see later, most tensors have multiple locally best rank-1 approximations, with one

of them being better than the others (i.e., a unique global best rank-1 approximation). Our final

result in this section states a condition under which there exist infinitely many best (global) rank-1

approximations.

Proposition 2.2. Let X be such that the matrix (X •3 zT ) is orthogonal for any nonzero vector z, and

(X •2 yT ) is orthogonal for any nonzero vector y. Then X has infinitely many best rank-1 approximations.

Proof. Theproof follows fromEq. (2.5) for the stationary points (y, z). The conditions of the proposition

imply that the matrices (X •3 zT ) •1 (X •3 zT ) and (X •2 yT ) •1 (X •2 yT ) are proportional to the

identity matrix for any nonzero y and z. Therefore, any vector is an eigenvector of these matrices, and

(2.5) holds for any nonzero y and z.

Since any (y, z) (with nonzero y and z) is a stationary point of minimizing (2.6), it follows that the

latter is constant. We conclude that any (x ⊗ y ⊗ z) with x as in (2.4), is a best rank-1 approximation

of X. �

Below is a 2 × 2 × 2 example satisfying the conditions of Proposition 2.2. We denote a tensor X

with two slabs X1 and X2 as [X1 |X2].
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Example 2.3. Let

X =
[
1 0 0 −1

0 1 1 0

]
. (2.10)

Then for any choice of nonzero vector z, the matrix (X •3 zT ), obtained by linear combination of the

above twomatrix slices, is orthogonal.Also, for anynonzerovectory, thematrix (X •2 yT ) is orthogonal.
Hence, X has infinitely many rank-1 approximations. One can verify that each rank-1 approximation

(x ⊗ y ⊗ z) with x as in (2.4), satisfies ||X − x ⊗ y ⊗ z||2 = 3.

The tensor (2.10) has rank 3 and is studied in [35] where it is shown that it has no best rank-2

approximation, the infimum of ||X − Y||2 over Y of rank at most 2 being 1. A more general result is

obtained in [12] where it is shown that no 2 × 2 × 2 tensor of rank 3 has a best rank-2 approximation.

In [29] it is shown that any sequence of rank-2 approximations Y(n) for which ||X − Y(n)||2 converges

to the infimum of 1, features diverging components.

3. Rank criteria and orbits of 2 × 2 × 2 tensors

It was shown in [12, Section 7] that 2 × 2 × 2 tensors (over the real field) can be transformed by

invertiblemultilinearmultiplications (1.1) into eight distinct canonical forms. This partitions the space

R2×2×2 into eight distinct orbits under the action of invertible transformations of a tensor “from the

three sides".

Before the eight orbits are introduced, we define some concepts. Amode-n vector of a d1 × d2 × d3
tensor is an dn × 1 vector obtained from the tensor by varying the nth index and keeping the other

indices fixed. The mode-n rank is defined as the dimension of the subspace spanned by the mode-n

vectors of the tensor. Themultilinear rank of the tensor is the triplet (mode-1 rank,mode-2 rank,mode-

3 rank). The mode-n rank generalizes the row and column rank of matrices. Note that a tensor with

multilinear rank (1, 1, 1) has rank 1 and vice versa. The multilinear rank is invariant under invertible

multilinear transformation [12, Section 2].

Related to the orbits of 2 × 2 × 2 tensors is the hyperdeterminant. Slab operations on [X1 |X2]
generate new slabs of the form λ1 X1 + λ2 X2. There holds

det(λ1 X1 + λ2 X2) = λ2
1 det(X1) + λ1 λ2

det(X1 + X2) − det(X1 − X2)

2
+ λ2

2 det(X2) .

(3.1)

ThehyperdeterminantofX, denotedas�(X), is definedas thediscriminantof thequadraticpolynomial

(3.1):

�(X) =
[
det(X1 + X2) − det(X1 − X2)

2

]2
− 4 det(X1) det(X2) . (3.2)

Hence, if �(X) is nonnegative, then a real slabmix exists that is singular. If �(X) is positive, then

two real and linearly independent singular slabmixes exist. It follows from (3.1) and (3.2) that the

hyperdeterminant is equal to the discriminant of the characteristic polynomial of det(X1)X2X
−1
1 or

det(X2)X1X
−1
2 . The sign of the hyperdeterminant is invariant under invertible multilinear transfor-

mation [12, Section 5].

Table 1 lists the canonical forms for each orbit as well as their rank, multilinear rank and hyperde-

terminant sign. Generic 2 × 2 × 2 tensors have rank 2 or 3 over the real field, both on a set of positive

measure [22,36].

For later use, we state the following rank and orbit criteria. The rank criteria have been proven for

p × p × 2 tensors in [16]. The 2 × 2 × 2 orbits can be found in [12, Section 7]. In the sequel, we will

use this result to verify the orbit of a 2 × 2 × 2 tensor.
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Table 1

Orbits of 2 × 2 × 2 tensors under the action of invertible multilinear transformation (S, T,U)
over the real field. The letters D and G stand for “degenerate" (zero volume set in the

eight-dimensional space of 2 × 2 × 2 tensors) and “typical" (positive volume set), respectively.

Canonical form Tensor rank Multilinear rank Sign �

D0 :
[
0 0 0 0

0 0 0 0

]
0 (0,0,0) 0

D1 :
[
1 0 0 0

0 0 0 0

]
1 (1,1,1) 0

D2 :
[
1 0 0 0

0 1 0 0

]
2 (2,2,1) 0

D′
2 :

[
1 0 0 1

0 0 0 0

]
2 (1,2,2) 0

D′′
2 :

[
1 0 0 0

0 0 1 0

]
2 (2,1,2) 0

G2 :
[
1 0 0 0

0 0 0 1

]
2 (2,2,2) +

D3 :
[
0 1 1 0

1 0 0 0

]
3 (2,2,2) 0

G3 :
[−1 0 0 1

0 1 1 0

]
3 (2,2,2) −

Lemma 3.1. Let X be a 2 × 2 × 2 tensor with slabs X1 and X2, of which at least one is nonsingular.

(i) If X2X
−1
1 or X1X

−1
2 has real eigenvalues and is diagonalizable, then X is in orbit G2.

(ii) If X2X
−1
1 or X1X

−1
2 has two identical real eigenvalues with only one associated eigenvector, then

X is in orbit D3.

(iii) If X2X
−1
1 or X1X

−1
2 has complex eigenvalues, then X is in orbit G3.

4. Best rank-1 subtraction for 2 × 2 × 2 tensors

For 2 × 2 × 2 tensors X in the orbits of Table 1, we would like to know in which orbit X − Y is

contained, where Y is a best rank-1 approximation of X. In this section, we present both examples and

general results. We begin by formulating our main result. It is not a deterministic result, but involves

generic 2 × 2 × 2 tensors, which are in orbits G2 and G3. Any tensor randomly generated from a

continuous distribution can be considered to be typical. The full Proof of Theorem 4.1 is contained in

Appendix A.

Theorem 4.1. For almost all 2 × 2 × 2 tensors X, and all best rank-1 approximations Y of X, the tensor

X − Y is in orbit D3.

Proof sketch.Weproceedas in thefirst part of Section2.We showthat there are eight stationarypoints

(y, z) satisfying (2.7) and (2.8), and that these can be obtained as roots of an eighth-degree polynomial.

There are two stationary points that yield x = 0 in (2.4), and do not correspond to the minimum of

(2.2). For the other six stationary points, we have�(X − Y) = 0, where Y is the corresponding rank-1

tensor. Finally, we show that themultilinear rank ofX − Y equals (2,2,2) for these six rank-1 tensors Y.

Hence, it follows that the best rank-1 approximationY satisfies�(X − Y) = 0 and that themultilinear

rank of X − Y is equal to (2,2,2). From Table 1 it then follows that X − Y is in orbit D3. �

Hence, for typical tensors in orbit G2, subtracting a best rank-1 approximation increases the rank to 3.

For typical tensors in orbit G3, subtracting a best rank-1 approximation does not affect the rank. This

is completely different from matrix analysis.
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In the Proof of Theorem 4.1 in Appendix A, it is shown that the slabs of Z = X − Y are nonsingular

almost everywhere. From Lemma 3.1 it follows that Z2Z
−1
1 has identical real eigenvalues and is not

diagonalizable, while X2X
−1
1 has either distinct real eigenvalues or complex eigenvalues. Hence, the

subtraction of a best rank-1 approximation yields identical real eigenvalues.

Next, we consider X in other orbits, and present deterministic results. We have the following result

for the degenerate orbits of ranks 1 and 2.

Proposition 4.2. Let X be a 2 × 2 × 2 tensor, and let Y be a best rank-1 approximation of X.

(i) If X is in orbit D1, then X − Y is in orbit D0.
(ii) If X is in orbit D2, D

′
2, or D

′′
2 , then X − Y is in orbit D1.

Proof. For X in orbit D1 it is obvious that Y = X is the unique best rank-1 approximation. Then X − Y

is in orbit D0.

Next, let X be in orbit D2. Then there exist orthonormal S, T, U such that

(S, T,U) · X =
[
λ 0 0 0

0 μ 0 0

]
, (4.1)

see [12, Proof of Lemma 8.2]. Subtracting a best rank-1 approximation from this tensor results in λ or

μ being set to zero (whichever has the largest absolute value; for λ = μ there are two best rank-1

approximations). Hence, the result is a rank-1 tensor. From Lemma 2.1 it follows that the same is

true for subtracting a best rank-1 approximation from X. For X in orbits D′
2 and D′′

2 the proof is

analogous. �

For X in orbit G2 or D3, the tensor X − Y is not restricted to a single orbit. The following examples

illustrate this fact.

Example 4.3. Let

X =
[
1 0 0 0

0 0 0 1

]
, (4.2)

which is the canonical tensor of orbit G2 in Table 1. It can be seen thatX − Y is in D1 (the only nonzero

entry of Y is either Y111 or Y222).

On the other hand, consider

X =
[
0 1 1 0

1 0 0 2

]
. (4.3)

For this tensor, X2X
−1
1 has two distinct real eigenvalues. Hence, by Lemma 3.1, the tensor is in orbit

G2. It can be shown that X has a unique best rank-1 approximation Y and that

X − Y =
[
0 1 1 0

1 0 0 0

]
, (4.4)

which is the canonical tensor of orbit D3 in Table 1.

Example 4.4. It follows from Lemma 3.1 that the following tensors are in orbit D3:[
2 0 0 1

0 0 1 0

]
,

[
1 0 0 1

0 0 2 0

]
,

[
1 0 0 2

0 0 1 0

]
. (4.5)

Subtracting the best rank-1 approximation Y from these tensors amounts to replacing the element 2

by zero. Hence, X − Y is in orbit D2, D
′
2, and D′′

2 , respectively.

On the other hand, it can be verified numerically or analytically that for X equal to the canonical

tensor of orbit D3 in Table 1, we have X − Y also in orbit D3. Moreover, numerical experiments show

that for a generic X in orbit D3, we have X − Y in orbit D3 as well. This suggests the following.
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Conjecture 4.5. For almost all tensors X in orbit D3, and all best rank-1 approximations Y of X, the tensor

X − Y is in D3.

The tensor X in Example 2.3 is in orbit G3 by Lemma 3.1. It can be shown that any of the infinitely

many best rank-1 approximations of X yields X − Y in orbit D3 (proof available on request). The

example below yields the same result for another X in orbit G3. Numerically and analytically, we have

not found any X in orbit G3 for which X − Y is not in orbit D3.

Example 4.6. Let

X =
[
1 0 0 −2

0 1 1 0

]
. (4.6)

Since X2X
−1
1 has complex eigenvalues, X is in orbit G3 by Lemma 3.1. It can be verified that X has a

unique best rank-1 approximation such that

X − Y =
[
1 0 0 0

0 1 1 0

]
. (4.7)

The latter tensor can be transformed to the canonical form of orbit D3 by swapping rows within each

slab (i.e., by applying a permutation in the first mode).

Our next result concerns tensors with diagonal slabs, i.e.

X =
[
a 0 e 0

0 d 0 h

]
. (4.8)

Then X has rank at most 2, since

X =
(
1

0

)
⊗
(
1

0

)
⊗
(
a

e

)
+
(
0

1

)
⊗
(
0

1

)
⊗
(
d

h

)
. (4.9)

Also, if ah /= de, then X = (I2, I2,U) · X̃, where X̃ is the canonical tensor of orbit G2 in Table 1, and

U =
[
a d

e h

]
. (4.10)

Hence, in this case X is in orbit G2.

We show that, for 2 × 2 × 2 tensors with diagonal slabs, we have X − Y in orbit D1. Naturally, the

same holds for X that can be transformed to a tensor with diagonal slabs by orthonormal multilinear

transformation (see Lemma 2.1). Note that tensors with diagonal slabs in orbit G2 form an exception to

the result of Theorem4.1, as does the canonical tensor of orbitG2 (see Example 4.3). However, Theorem

4.1 states that these exceptions form a set of measure zero.

Proposition 4.7. Let X be a 2 × 2 × 2 tensor with diagonal slabs and rank 2, and let Y be a best rank-1

approximation of X. Then X − Y is in orbit D1.

Proof. We use the first part of Section 2. Let X be as in (4.8). First, we assume a2 + e2 < d2 + h2. For

Y =
[
0 0 0 0

0 d 0 h

]
, (4.11)

we have ‖X − Y‖2 = a2 + e2 and X − Y in orbit D1. Next, we show that (4.11) is the unique best

rank-1 approximation of X. Using (2.6), the equation ‖X − Y‖2 � a2 + e2 can be written as

(d2 + h2) (y21 + y22) (z21 + z22) �(ay1z1 + ey1z2)
2 + (dy2z1 + hy2z2)

2 , (4.12)

which can be rewritten as

(d2 + h2 − a2 − e2) y21 (z21 + z22) + (ez1 − az2)
2 y21 + (hz1 − dz2)

2 y22 � 0 . (4.13)
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Since (d2 + h2 − a2 − e2) is positive by assumption, and y nor z can be all-zero, it follows that (4.13)

can only hold with equality, that is, for y1 = 0 and hz1 = dz2. Using (2.4), it then follows that the Y

for which we have equality in (4.13) is given by (4.11). This shows that (4.11) is the unique best rank-1

approximation of X.

Next, we consider the case a2 + e2 > d2 + h2. Analogous to the first part of the proof, it can be

shown that

Y =
[
a 0 e 0

0 0 0 0

]
, (4.14)

is the unique best rank-1 approximation of X. This implies that ‖X − Y‖2 = d2 + h2 and X − Y is in

orbit D1.

Finally, we consider the case a2 + e2 = d2 + h2. Here, we have multiple best rank-1 approxima-

tions. Setting y1 = 0 in (4.13) yields (4.11) as a best rank-1 approximation. Setting y2 = 0 yields (4.14)

as a best rank-1 approximation. If ah = de, then (4.13) can also be satisfied by setting ez1 = az2 and

hz1 = dz2. This yields

Y = (y21 + y22)
−1

[
y21a y1y2a y21e y1y2e

y1y2d y22d y1y2h y22h

]
. (4.15)

It can be verified that for Y in (4.15) we have ‖X − Y‖2 = d2 + h2 = a2 + e2 and X − Y in orbit D1.

�

5. Best rank-1 approximation for symmetric tensors

Here, we consider the best rank-1 approximation problem for a third-order tensor X ∈ Rd×d×d

that is symmetric in all modes, i.e. Xijk = Xjik = Xkji = Xikj = Xjki = Xkij . We assume the same for the

rank-1 approximation, which yields the problem

miny∈Rd ||X − y ⊗ y ⊗ y||2 . (5.1)

An adaption of [12, Proposition 4.2] or [7] show that problem (5.1) always has an optimal solution.

Let �2(y) = ||X − y ⊗ y ⊗ y||2. Analogous to the first part of Section 2, �2 can be written as

�2 = ||X||2 − 2X •1 yT •2 yT •3 yT + ||y||6 . (5.2)

Hence, the minimization problem (5.1) is equivalent to minimizing (5.2). Using this fact, and setting

the gradient of �2 with respect to y equal to zero, we obtain

y = X •1 yT •2 yT

||y||4 . (5.3)

Substituting (5.3) into (5.2) yields

�2 = ||X||2 − ||X •1 yT •2 yT ||2
||y||4 . (5.4)

Hence, a best symmetric rank-1 approximation (y ⊗ y ⊗ y) of X is found by minimizing (5.2) or (5.4)

over y. The stationary points y are given by (5.3); this was already noticed in [5, Section 2.3].

One may wonder whether the restriction to symmetry of the rank-1 approximation in (5.1) is

necessary. That is, if we solve the unrestricted problem (2.1) for symmetric X, will the best rank-1

approximation be symmetric? Numerical experiments with random symmetric X yield the following

conjecture.

Conjecture 5.1. For almost all symmetric 2 × 2 × 2 tensors X, the best rank-1 approximation Y of X is

unique and symmetric.
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However, for

X =
[−1 0 0 1

0 1 1 0

]
, (5.5)

Proposition 2.2 holds, and infinitely many best rank-1 approximations x ⊗ y ⊗ z exist. Taking y /= z

and x as in (2.4), then yields infinitely many asymmetric best rank-1 approximations. As in Example

2.3, one can verify that ||X − x ⊗ y ⊗ z||2 = 3 for any best rank-1 approximation. Note that also the

symmetric rank-1 tensor with x = y = z = (−1 0)T is a best rank-1 approximation of X.

6. Rank criteria and orbits of symmetric 2 × 2 × 2 tensors

Here, we consider real symmetric 2 × 2 × 2 tensors. We establish their ranks and orbits under

invertible multilinear transformation (S, S, S) · X. These transformations preserve the symmetry. The

symmetric tensor rank [7, Section 4] is defined as the smallest R such that

X =
R∑

r=1

ar ⊗ ar ⊗ ar . (6.1)

There is a bijection between symmetric d × d × d tensors and homogeneous polynomials of degree 3

in d variables. A symmetric d × d × d tensor X is associated with the polynomial

p(u1, . . . , ud) = ∑
ijk

xijk uiujuk . (6.2)

Amultilinear transformation (S, S, S) · X is equivalent to a change of variables v = Su in the associated

polynomial.

The symmetric rank of symmetric 2 × 2 × · · · × 2 tensors can be obtained from the well-known

Sylvester Theorem, which makes use of the polynomial representation [23(Section 5),4]. For generic

symmetric 2 × 2 × · · · × 2 tensors, [4] show that the Sylvester Theorem defines an algorithm to

compute a symmetric decomposition (6.1) with R equal to the symmetric rank. Below, the Sylvester

Theorem for symmetric 2 × 2 × 2 tensors is formulated.

Theorem 6.1 (Sylvester). A real symmetric 2 × 2 × 2 tensor with associated polynomial

p(u1, u2) = γ3 u
3
1 + 3 γ2 u

2
1u2 + 3 γ1 u1u

2
2 + γ0 u

3
2 , (6.3)

hasa symmetricdecomposition (6.1) intoR rank-1 terms if andonly if there exists avectorg = (g0, . . . , gR)
T

with ⎡⎢⎢⎢⎣
γ0 . . . γR

γ1 . . . γR+1

...
...

γ3−R . . . γ3

⎤⎥⎥⎥⎦ g = 0 , (6.4)

and if the polynomial q(u1, u2) = gR u
R
1 + · · · + g1 u1u

R−1
2 + g0 u

R
2 has R distinct real roots.

For our purposes, we make use of a symmetric rank criterion similar to Lemma 3.1, formulated as

Lemma 6.2 below. The link between this rank criterion and the Sylvester Theorem will be explained

at the end of this section.

Let the entries of a symmetric 2 × 2 × 2 tensor be denoted as

X =
[
a b b c

b c c d

]
. (6.5)

For later use, we mention that the hyperdeterminant (3.2) of X in (6.5) is given by

�(X) = (bc − ad)2 − 4(bd − c2)(ac − b2) . (6.6)

As in the asymmetric case, the sign of the hyperdeterminant is invariant under invertible multilinear

transformation (S, S, S) · X.
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Lemma 6.2. Let X be a real symmetric 2 × 2 × 2 tensor with slabs X1 and X2, of which at least one is

nonsingular.

(i) If X2X
−1
1 or X1X

−1
2 has distinct real eigenvalues, then X has symmetric rank 2.

(ii) If X2X
−1
1 or X1X

−1
2 has identical real eigenvalues, then X has symmetric rank at least 3.

(iii) If X2X
−1
1 or X1X

−1
2 has complex eigenvalues, then X has symmetric rank at least 3.

Proof. First, we prove (i). We considerX2X
−1
1 . The proof forX1X

−1
2 is completely analogous. Note that

since X1 is nonsingular, the symmetric rank of X is at least 2. Let X2X
−1
1 have distinct real eigenvalues

λ1 and λ2. Using (6.5), we have

X2X
−1
1 =

[
0 1

x y

]
, x = c2 − bd

ac − b2
, y = ad − bc

ac − b2
, (6.7)

which has eigenvalues

λ1 = y +
√
y2 + 4x

2
, λ2 = y −

√
y2 + 4x

2
. (6.8)

It can be verified that the eigenvectors of X2X
−1
1 are α (1 λ1)

T and β (1 λ2)
T , respectively. Next, we

show that appropriate choices of α and β yield a symmetric rank-2 decomposition (6.1) for X.

Let A contain the eigenvectors of X2X
−1
1 , i.e.

A =
[

α β
αλ1 βλ2

]
. (6.9)

Note that a symmetric rank-2 decomposition (6.1) can be denoted as Xk = A Ak A
T , with Ak =

diag(ak1, ak2), k = 1, 2. The eigendecomposition of X2X
−1
1 is then given by A A2A

−1
1 A−1, which is

consistent with (6.9) since A2A
−1
1 = diag(λ1, λ2). To obtain a symmetric rank-2 decomposition, it

remains to solve the equations

A−1 X1 = A1 A
T =

[
α3 α3λ1

β3 β3λ2

]
, A−1 X2 = A2 A

T =
[
α3λ1 α3λ2

1

β3λ2 β3λ2
2

]
. (6.10)

By writing out the entries of A−1X1 and A−1X2, it can be seen that a solution (α,β) exists if and only

if

a λ1 λ2 − b (λ1 + λ2) + c = 0 , b λ1 λ2 − c (λ1 + λ2) + d = 0 . (6.11)

Using (6.8), we have λ1λ2 = −x and λ1 + λ2 = y. Combinedwith the expressions for x and y in (6.7),

this verifies (6.11). This completes the proof of (i).

As shown in the proof of (i), if X has one nonsingular slab, say X1, and symmetric rank 2,

then X2X
−1
1 is diagonalizable. As also shown in the proof of (i), when X2X

−1
1 has identical real

eigenvalues it does not have two linearly independent eigenvectors and, hence, is not diagonalizable.

Therefore, in case (ii) the symmetric rank of X is at least 3. The same holds in case (iii). This completes

the proof. �

Proposition 6.3. The orbits of real symmetric 2 × 2 × 2 tensors X under the action of invertible multilin-

ear transformation (S, S, S) · X, are as given in Table 2.

Proof. Let e1 and e2 denote the first and second column of I2. Orbit D0 corresponds to the all-zero

tensor. ForXwithsymmetric rank1,wehaveX = a ⊗ a ⊗ a. Thereexists anonsingularSwithSa = e1.

Then (S, S, S) · X equals the canonical form of orbit D1 in Table 2, which has multilinear rank (1,1,1).

Analogously, for X with symmetric rank 2, we have X = a1 ⊗ a1 ⊗ a1 + a2 ⊗ a2 ⊗ a2, with a1 and

a2 linearly independent. There exists a nonsingular Swith S[a1 a2] = [e1 e2]. Then (S, S, S) · X equals
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Table 2

Orbits of symmetric 2 × 2 × 2 tensors under the action of invertible multilinear transformation (S, S, S)

over the real field. The letters D and G stand for “degenerate" (zero volume set in the four-dimensional

space of symmetric 2 × 2 × 2 tensors) and “typical" (positive volume set), respectively.

Canonical form Symmetric rank Multilinear rank Sign �

D0 :
[
0 0 0 0

0 0 0 0

]
0 (0,0,0) 0

D1 :
[
1 0 0 0

0 0 0 0

]
1 (1,1,1) 0

G2 :
[
1 0 0 0

0 0 0 1

]
2 (2,2,2) +

D3 :
[
0 1 1 0

1 0 0 0

]
3 (2,2,2) 0

G3 :
[−1 0 0 1

0 1 1 0

]
3 (2,2,2) −

the canonical form of orbit G2 in Table 2, which has positive hyperdeterminant (6.6) and multilinear

rank (2,2,2).

Next, let X have symmetric rank 3 and decomposition (6.1) with A = [a1 a2 a3]. No two columns

of A are proportional, since otherwise a symmetric rank-2 decomposition is possible. It follows that

there exists a nonsingular Swith

SA =
[
α 0 1

0 β 1

]
. (6.12)

This yields

(S, S, S) · X =
[
a 1 1 1

1 1 1 d

]
, (6.13)

with a = 1 + α3 and d = 1 + β3. We define orbits D3 and G3 according to whether the hyperdeter-

minant � is zero or negative, respectively. Note that � > 0 is associated with orbit G2.

In Appendix C, we show that any tensor X in orbit D3 or G3 is related to the canonical form Y of the

orbit by an invertible multilinear transformation (S, S, S) · Y = X.

We conclude our proof by showing that the symmetric rank of real symmetric 2 × 2 × 2 tensors

is at most 3. Let X be as in (6.5). Suppose b /= 0 and c /= 0. Then (S, S, S) · X is of the form (6.13) for

S = diag(μ, η)withμ3 = c/b2 and η3 = b/c2. Since (6.13) has the symmetric rank-3 decomposition

(6.12), the tensor X has at most symmetric rank 3.

Next, suppose b = 0 and c /= 0. We subtract a symmetric rank-1 tensor a ⊗ a ⊗ a with a = γ e1

from X such that (a − γ 3)c > 0. Denote the resulting tensor by Z. It can be verified that Z2Z
−1
1 has

distinct real eigenvalues. By Lemma 6.2 (i) it has symmetric rank 2. Combined with the subtracted

rank-1 tensor, this implies a symmetric rank-3 decomposition of X.

The case c = 0 and b /= 0 can be dealt with analogously. When b = c = 0, a symmetric rank-2

decomposition is immediate. Hence, the symmetric rank is at most 3. �

The following corollary follows from Lemma 6.2 and Proposition 6.3. It is the full analogue of

Lemma 3.1.

Corollary 6.4. Let X be a real symmetric 2 × 2 × 2 tensor with slabs X1 and X2, of which at least one is

nonsingular.

(i) If X2X
−1
1 or X1X

−1
2 has distinct real eigenvalues, then X is in orbit G2.

(ii) If X2X
−1
1 or X1X

−1
2 has identical real eigenvalues, then X is in orbit D3.

(iii) If X2X
−1
1 or X1X

−1
2 has complex eigenvalues, then X is in orbit G3.
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Proof. Since there is only one orbit with symmetric rank 2, the proof of (i) is the Proof of Lemma 6.2

(i). Since the symmetric rank is at most 3, cases (ii) and (iii) have symmetric rank 3. As in the asym-

metric case, the hyperdeterminant (6.6) is equal to the discriminant of the characteristic polynomial

of det(X1)X2X
−1
1 or det(X2)X1X

−1
2 . Hence, case (ii) has � = 0 and corresponds to orbit D3, and case

(iii) has � < 0 and corresponds to orbit G3. �

The hyperdeterminant (6.6) is equal to the discriminant of the polynomial q(u1, u2) in the Sylvester

Theorem (Theorem 6.1) for X in (6.5) and R = 2. Indeed, we have γ3 = a, γ2 = b, γ1 = c and γ0 = d.

The vector g = (g0, g1, g2)
T should satisfy[

d c b

c b a

]
g = 0 , (6.14)

which implies

g0 = ac − b2 , g1 = bc − ad , g2 = bd − c2 . (6.15)

The discriminant of q(u1, u2) is given by g21 − 4 g0 g2 which is equal to the hyperdeterminant (6.6).

This establishes the equivalence between the Sylvester Theorem with R = 2 and the symmetric rank

criteria of Lemma 6.2.

7. Best rank-1 subtraction for symmetric 2 × 2 × 2 tensors

Here, we consider the problem of determining the rank and orbit of X − Y, where X is a symmetric

2 × 2 × 2 tensor and Y is a best symmetric rank-1 approximation of X. Obviously, if X is in orbit D1,

then X − Y is in orbit D0. Next, we present our main result in Theorem 7.1, which is the analogue of

Theorem 4.1. It concerns generic symmetric 2 × 2 × 2 tensors, which are in orbits G2 and G3. The full

Proof of Theorem 7.1 is contained in Appendix B.

Theorem 7.1. For almost all symmetric2 × 2 × 2 tensorsX, andall best symmetric rank-1approximations

Y of X, the tensor X − Y is in orbit D3.

Proof sketch.We proceed as in Section 5. It is shown in [9, Section 3.5] that there are three stationary

points y satisfying (5.3), and that these can be obtained as roots of a third-degree polynomial. We

show that, for all three stationary points, we have �(X − Y) = 0, where Y is the corresponding rank-

1 tensor. Finally, we show that the multilinear rank of X − Y equals (2, 2, 2) for these three rank-1

tensors Y. This suffices to conclude that X − Y is in orbit D3. �

Hence, as in the asymmetric 2 × 2 × 2 case, for typical symmetric tensors in orbit G2, subtracting

a best symmetric rank-1 approximation increases the symmetric rank to 3. For typical symmetric

tensors in orbit G3, subtracting a best symmetric rank-1 approximation does not affect the symmetric

rank.

In the Proof of Theorem 7.1 in Appendix B, it is shown that the slabs of Z = X − Y are nonsingular

almost everywhere. From Lemma 6.2 it follows that Z2Z
−1
1 has identical real eigenvalues, whileX2X

−1
1

has either distinct real eigenvalues or complex eigenvalues. Hence, also for symmetric 2 × 2 × 2

tensors, the subtraction of a best rank-1 approximation yields identical real eigenvalues.

We conclude this section with examples of X in orbits G2 and G3 such that X − Y is in orbit D3.

These examples illustrate Theorem 7.1, and are the symmetric analogues of Examples 4.3 and 4.6.

Example 7.2. Let

X =
[
0 1 1 1

1 1 1 0

]
, X2X

−1
1 =

[
0 1

−1 1

]
. (7.1)

Since the latter has complex eigenvalues, Lemma 6.2 shows that X is in orbit G3.
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Next, we compute the best symmetric rank-1 approximation Y to X, which has the form

Y =
[

y31 y21y2 y21y2 y1y
2
2

y21y2 y1y
2
2 y1y

2
2 y32

]
. (7.2)

The stationary points (5.3) are given by

6 y51 + 12 y31y
2
2 + 6 y1y

4
2 − 12 y1y2 − 6 y22=0 , (7.3)

6 y52 + 12 y21y
3
2 + 6 y41y2 − 12 y1y2 − 6 y21=0 . (7.4)

It follows that y1 /= 0 and y2 /= 0 (if one of them equals zero, then both are zero and Y is all-zero).

Multiplying (7.4) by y1 and subtracting (7.3) multiplied by y2 yields

6 (y2 − y1)

(
y2 − −3 + √

5

2
y1

)(
y2 − −3 − √

5

2
y1

)
= 0 . (7.5)

Hence, y2 = y1 or y2 = (−3/2 ± √
5/2) y1. However, it can be verified that the latter is in contra-

diction with (7.3) and (7.4). Therefore, y2 = y1 and it follows from (7.3) and (7.4) that y31 = y32 = 3/4.
This yields � = 3/2 and

Y = 1

4

[
3 3 3 3

3 3 3 3

]
, Z = X − Y = 1

4

[−3 1 1 1

1 1 1 −3

]
. (7.6)

Hence,

Z2Z
−1
1 =

[
0 1

−1 −2

]
, (7.7)

which has a double eigenvalue −1. Hence, Z is in orbit D3 by Lemma 6.2.

Example 7.3. Let

X =
[
3 1 1 1

1 1 1 3

]
, X2X

−1
1 =

[
0 1

−1 4

]
. (7.8)

Since the latter has real and distinct eigenvalues, Lemma 6.2 shows that X is in orbit G2.

Analogous to Example 7.2, it can be shown that the best symmetric rank-1 approximation of X is

given by

Y = 3

2

[
1 1 1 1

1 1 1 1

]
. (7.9)

We obtain

Z = X − Y = 1

2

[
3 −1 −1 −1

−1 −1 −1 3

]
, Z2Z

−1
1 =

[
0 1

−1 −2

]
. (7.10)

The latter has a double eigenvalue −1. Hence, Z is in orbit D3 by Lemma 6.2.

8. Discussion

It is now rather well known that consecutively subtracting a best rank-1 approximation from a

higher-order tensor generally does not either reveal tensor rank nor yield a “good” low-rank ap-

proximation. A numerical example and discussion is provided in [17, Section 7]. Hence, a rank-1

deflation procedure as is available for matrices, generally does not exist for higher-order tensors.

We have given a mathematical treatment of this property for real 2 × 2 × 2 tensors. In Theorem 4.1,

we showed that subtracting a best rank-1 approximation from a generic 2 × 2 × 2 tensor (which has

rank 2 or 3) results in a rank-3 tensor located on the boundary between the sets of rank-2 and rank-3

tensors. Hence, for typical tensors of rank 2, subtracting a best rank-1 approximation increases the

rank to 3.
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A generic 2 × 2 × 2 tensor X has rank 2 if X2X
−1
1 has distinct real eigenvalues, and rank 3 if X2X

−1
1

has complex eigenvalues; see Lemma 3.1. If Y is a best rank-1 approximation of X, then Z = X − Y

has rank 3 and lies on the boundary between the rank-2 and rank-3 sets, i.e. Z2Z
−1
1 has identical

real eigenvalues. The rank-2 and rank-3 orbits G2 and G3 are characterized by positive and negative

hyperdeterminant �, respectively, while on the boundary we have � = 0. The result that subtraction

of a best rank-1 approximation yields identical real eigenvalues for Z2Z
−1
1 is new and expands the

knowledge of the topology of tensor rank.

Numerical experiments yield the conjecture that for a generic real-valued p × p × 2 tensor X,

subtracting its best rank-1 approximation Y results in Z = X − Y with Z2Z
−1
1 having one pair of

identical real eigenvalues with only one associated eigenvector. Moreover, if the number of pairs of

complex eigenvalues of X2X
−1
1 equals n, then Z2Z

−1
1 has max(0, n − 1) pairs of complex eigenvalues.

For n = 0, this implies that X has rank p and Z has rank p + 1 [16,33, Lemma 2.2].

We also considered real symmetric 2 × 2 × 2 tensors. In Lemma6.2,weprovided a symmetric rank

criterion via the eigenvalues of X2X
−1
1 , which is similar to the asymmetric case. Symmetric tensors

have rank 2 and 3 on sets of positive volume, and X2X
−1
1 with distinct real eigenvalues implies � > 0

and orbit G2, while X2X
−1
1 with complex eigenvalues implies � < 0 and orbit G3. When X2X

−1
1 has

identical real eigenvalues, it has� = 0 and symmetric rank 3 (orbitD3). The rank criteria of Lemma6.2

are equivalent to the well-known Sylvester Theorem for symmetric rank 2. In Theorem 7.1, we showed

that subtracting a best symmetric rank-1 approximation from a typical symmetric tensor yields a

tensor in orbit D3, i.e. it has symmetric rank 3 and � = 0. This result is completely analogous to the

asymmetric 2 × 2 × 2 case.

A thirdcasenot reportedhere is thatof2 × 2 × 2tensorswithsymmetric slabs, i.e.X12k = X21k, k =
1, 2. The rank-1 approximation problem is then

miny∈R2 ,z∈R2 ||X − y ⊗ y ⊗ z||2 . (8.1)

We can define a symmetric slab rank analogous to the symmetric rank and propose a rank criterion

similar to Lemmas 3.1 and 6.2. Generic 2 × 2 × 2 tensors with symmetric slabs have symmetric slab

ranks 2 and 3 on sets of positive volume. Moreover, a result analogous to Theorems 4.1 and 7.1 can be

proven in this case.

Appendix A. Proof of Theorem 4.1

We make use of the first part of Section 2. Let X be a generic 2 × 2 × 2 tensor with entries

X =
[
a b e f

c d g h

]
. (A.1)

We consider the rank-1 approximation problem (2.1). It is our goal to show that, for the optimal

solution Y = x ⊗ y ⊗ z, we have X − Y in orbit D3. From the list of orbits in Table 1, it follows

that it suffices to show �(X − Y) = 0 and X − Y has multilinear rank (2,2,2). We will do this by

considering the stationary points of the rank-1 approximation problem. For later use, wemention that

the hyperdeterminant (3.2) of X in (A.1) is given by

�(X) = (ah − bg + de − cf )2 − 4 (ad − bc)(eh − fg) . (A.2)

We begin our proof by showing that for the best rank-1 approximation of X we have x1 /= 0, x2 /=
0, y1 /= 0, y2 /= 0, z1 /= 0 and z2 /= 0 almost everywhere. Due to the scaling indeterminacy in (x ⊗
y ⊗ z), this implies that we may set y1 = z1 = 1 without loss of generality.

Lemma A.1. Let X be a generic 2 × 2 × 2 tensor with a best rank-1 approximation x ⊗ y ⊗ z. Then

x1 /= 0, x2 /= 0, y1 /= 0, y2 /= 0, z1 /= 0, z2 /= 0 almost everywhere.

Proof. We show that z1 /= 0 almost everywhere. The proofs for y1, y2 and z2 are analogous. The proofs

for x1 and x2 follow by interchanging the roles of x and y.
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Let � be as in (2.6) and let �0 denote (2.6) with z1 = 0. Then � < �0 is equivalent to[
(ay1z1 + by2z1 + ey1z2 + fy2z2)

2 + (cy1z1 + dy2z1 + gy1z2 + hy2z2)
2
]

> (z21 + z22)
[
(ey1 + fy2)

2 + (gy1 + hy2)
2
]
, (A.3)

which, after setting y1 = z1 = 1, can be rewritten as

(a2 + c2 − e2 − g2 + 2z2 (ae + cg))

+ 2y2 (ab + cd − ef − gh + z2 (af + be + ch + dg))

+ y22 (b2 + d2 − f 2 − h2 + 2z2 (bf + dh)) > 0 . (A.4)

Since (bf + dh) /= 0 almost everywhere, it is possible to choose z2 such that the coefficient of y22 is

positive. Then there is a range of values y2 for which (A.4) holds. This shows that, almost everywhere,

we can find a better rank-1 approximation than setting z1 = 0. This completes the proof of z1 /= 0. �

As mentioned above Lemma A.1, we set y1 = z1 = 1 without loss of generality. Since the optimal

x is given by (2.4), the problem of finding a best rank-1 approximation of X is now a problem in the

variables y2 and z2 only.

Next, we rewrite Eqs. (2.7) and (2.8) specifying the stationary points (y2, z2) as

z22

[
(ef + gh) y22 + (e2 + g2 − f 2 − h2) y2 − (ef + gh)

]
+ z2

[
(af + be + ch + dg) y22 + 2 (ae + cg − bf − dh) y2 − (af + be + ch + dg)

]
+

[
(ab + cd) y22 + (a2 + c2 − b2 − d2) y2 − (ab + cd)

]
= 0 , (A.5)

and

z22

[
(bf + dh) y22 + (af + be + ch + dg) y2 + (ae + cg)

]
+ z2

[
(b2 + d2 − f 2 − h2) y22 + 2 (ab + cd − ef − gh) y2 + (a2 + c2 − e2 − g2)

]
+

[
−(bf + dh) y22 − (af + be + ch + dg) y2 − (ae + cg)

]
= 0 . (A.6)

Using the expression (2.4) for x, also the hyperdeterminant (3.2) of X − Y can be written as a

function of (y2, z2) only. After some manipulations, we obtain

(1 + y22)
2(1 + z22)

2 �(X − Y)

=
[
z22

[
(bg − de) y22 + (ag − bh − ce + df ) y2 + (cf − ah)

]
+ z2

[
(bc − ad + eh − fg) y22 + (bc − ad + eh − fg)

]
+

[
(ah − cf ) y22 + (ag − bh − ce + df ) y2 + (de − bg)

]]2
. (A.7)

Eqs. (A.5) and (A.6) specifying the stationarypoints (y2, z2), and thehyperdeterminant (A.7)without

the square, are of the same form: a polynomial of degree 4 in y2 and z2 that is quadratic in both y2
and z2. We use the result of the following lemma to compare the stationary points satisfying (A.5) and

(A.6) to the roots of (A.7).

Lemma A.2. Let f (u) = α u2 + β u + γ andg(u) = δ u2 + ε u + ν be second-degreepolynomials.Then
f and g have a common root if and only if

(αε − βδ) (βν − εγ ) = (γ δ − αν)2 . (A.8)
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Moreover, if (γ δ − αν) and (αε − βδ) are nonzero, the common root is given by

(βν − εγ )

(γ δ − αν)
= (γ δ − αν)

(αε − βδ)
. (A.9)

Proof. First, suppose f and g have a common root r. Then f (u) = α(u − r)(u − r1) and g(u) =
δ(u − r)(u − r2) for some r1 and r2. It follows that

β = −α (r + r1) ε = −δ (r + r2) γ = α r r1 ν = δ r r2 . (A.10)

Using these expressions, it can be verified that (A.8) holds, and r equals the expressions in (A.9).

Next, suppose (A.8) holds. Let f (u) = α(u − r1)(u − r2) and g(u) = δ(u − r3)(u − r4) for some

r1, r2, r3, r4. It follows that

β = −α (r1 + r2) ε = −δ (r3 + r4) γ = α r1 r2 ν = δ r3 r4 . (A.11)

Substituting these expressions into (A.8) and dividing both sides by α2δ2 yields

(r1 + r2 − r3 − r4) (r1r2 (r3 + r4) − r3r4 (r1 + r2)) = (r1r2 − r3r4)
2 . (A.12)

This can be rewritten as

(r1 − r3)(r1 − r4)(r2 − r3)(r2 − r4) = 0 , (A.13)

which implies that f and g must have a common root. As above, we have the expressions (A.9) for the

common root. �

Using Lemma A.2, the stationary points (y2, z2) are found as follows. Eqs. (A.5) and (A.6) represent

two quadratic polynomials in y2 that have a common root. Lemma A.2 states that (A.8) must hold,

where all coefficients are second-degree polynomials in z2. We rewrite this equation as Pstatz (z2) = 0,

where Pstatz is a polynomial of degree 8. The 8 roots of Pstat
z are the z2 corresponding to stationary points.

For each z2, the corresponding y2 is the commonroot givenby (A.9).Hence, there are8 stationarypoints

(y2, z2), and some of these may be complex.

Instead of interpreting (A.5) and (A.6) as polynomials in y2, we may interpret them as polynomials

in z2 with coefficients depending on y2. As above, the y2 of the stationary points are then found by

finding the roots of an eighth-degree polynomial Pstat
y (y2) that is defined by (A.8). For each y2, the

corresponding z2 is the common root given by (A.9). Both ways of obtaining the stationary points

necessarily yield the same result.

Analogously, we may determine the points (y2, z2) satisfying (A.5) and having �(X − Y) = 0 in

(A.7). The same approach yields the points satisfying (A.6) that are roots of (A.7). We denote the

eighth-degree polynomials corresponding to (A.5) and the roots of (A.7) as P
eig1
y and P

eig1
z . We denote

the eighth-degree polynomials corresponding to (A.6) and the roots of (A.7) as P
eig2
y and P

eig2
z . Using

this approach, we obtain the following relation between the stationary points and the roots of (A.7).

Lemma A.3. The points (y2, z2) satisfying two of the three equations (A.5), (A.6), root of (A.7), are related
as specified in Table 3. In particular, 6 of the 8 stationary points are roots of (A.7).

Proof. After some tedious analysis (or by using symbolic computation software), it can be verified that

Pstatz (z2)

P
eig1
z (z2)

= 1 ,
Pstat
z (z2)

P
eig2
z (z2)

= (eh − fg) z22 + (ah − bg + de − cf ) z2 + (ad − bc)

(ad − bc) z22 − (ah − bg + de − cf ) z2 + (eh − fg)
, (A.14)

Pstaty (y2)

P
eig2
y (y2)

= 1 ,
Pstat
y (y2)

P
eig1
y (y2)

= (df − bh) y22 − (ah + bg − de − cf ) y2 + (ce − ag)

(ce − ag) y22 + (ah + bg − de − cf ) y2 + (df − bh)
. (A.15)

Hence, the roots z2 of Pstat
z and P

eig1
z are identical, and so are the roots y2 of Pstat

y and P
eig2
y . Also, Pstat

z

and P
eig2
z have 6 of the 8 roots in common, as do Pstat

y and P
eig1
y . This implies that the z2-values of
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Table 3

Schedule of points (y2 , z2) satisfying each pair of the Eqs. (A.5), (A.6), root of (A.7). Eqs. (A.5) and (A.6) describe stationary points,

while the roots of (A.7) have �(X − Y) = 0. As can be seen, the points (y(i) , z(i)), i = 1, . . . , 6, satisfy all three equations.

(A.5) and (A.6) y(1) y(2) y(3) y(4) y(5) y(6) y(7) y(8)

z(1) z(2) z(3) z(4) z(5) z(6) z(7) z(8)

(A.5) and root of (A.7) y(1) y(2) y(3) y(4) y(5) y(6) y(9) y(10)

z(1) z(2) z(3) z(4) z(5) z(6) z(7) z(8)

(A.6) and root of (A.7) y(1) y(2) y(3) y(4) y(5) y(6) y(7) y(8)

z(1) z(2) z(3) z(4) z(5) z(6) z(9) z(10)

the stationary points coincide with the z2-values of the points satisfying (A.5) that are roots of (A.7).

Analogously, the y2-values of the stationary points coincide with the y2-values of the points satisfying

(A.6) that are roots of (A.7). Also, 6 of the z2-values of the stationary points coincide with the z2-values

of the points satisfying (A.6) that are roots of (A.7). And 6 of the y2-values of the stationary points

coincide with the y2-values of the points satisfying (A.5) that are roots of (A.7).

In order to prove the relations in Table 3, it remains to show that the 6 common y2-values and the

6 common z2-values form 6 common points (y2, z2). Let z2 be a root of Pstatz and, hence, of P
eig1
z . The

corresponding y2 of the stationary point is the common root given by (A.9). The corresponding y2 of

the point satisfying (A.5) that is a root of (A.7) is given by an analogous expression. Equating these

two expressions for y2 yields an eighth-degree polynomial in z2 analogous to (A.8). We denote this

polynomial as Pcom
z . After some tedious analysis (or by using symbolic computation software), it can

be verified that

Pstat
z (z2)

Pcom
z (z2)

= (eh − fg) z22 + (ah − bg + de − cf ) z2 + (ad − bc)

(ef + gh) z22 + (af + be + ch + dg) z2 + (ab + cd)
. (A.16)

Hence, Pstatz and Pcomz have 6 common roots. This implies that 6 stationary points (y2, z2) are also roots

of (A.7). This completes the proof of the relations in Table 3. �

So far, we have shown that 6 of the 8 stationary points in the rank-1 approximation problem satisfy

�(X − Y) = 0. In Lemma A.4 below, we show that the two other stationary points (y(7), z(7)) and

(y(8), z(8)) correspond to x = 0 in (2.4),which is not a best rank-1 approximation. The globalminimum

of the rank-1 approximation problem is thus attained in one of the stationary points (y(i), z(i)), i =
1, . . . , 6. In Lemma A.5 the Proof of Theorem 4.1 is completed by showing that the multilinear rank

of X − Y equals (2, 2, 2) for these stationary points. Together with �(X − Y) = 0, this implies that

X − Y is in orbit D3.

Next, we consider the two stationary points (y(7), z(7)) and (y(8), z(8)). Note that y(7) and y(8) are

the roots of the numerator of (A.15), y(9) and y(10) are the roots of the denominator of (A.15), z(7) and

z(8) are the roots of the numerator of (A.14), and z(9) and z(10) are the roots of the denominator of

(A.14). Moreover, these four polynomials of degree 2 have identical discriminant that is equal to the

hyperdeterminant of X as given in (A.2).

Hence, if �(X) < 0, i.e. X is in orbit G3, then the stationary points (y(7), z(7)) and (y(8), z(8)) are

complex. Since we only consider real-valued rank-1 approximations, we discard these two stationary

points. If �(X) > 0, i.e. X is in orbit G2, we resort to Lemma A.4.

Lemma A.4. Suppose �(X) > 0. Then the stationary points (y(7), z(7)) and (y(8), z(8)) in Table 3 yield

x = 0 in (2.4), and do not correspond to the global minimum almost everywhere.

Proof. It can be verified that y(7) and y(8) are given by

(ah + bg − de − cf ) ±
√

(ah + bg − de − cf )2 − 4(df − bh)(ce − ag)

2 (df − bh)
, (A.17)
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and z(7) and z(8) are given by

−(ah − bg + de − cf ) ±
√

(ah − bg + de − cf )2 − 4(eh − fg)(ad − bc)

2 (eh − fg)
, (A.18)

where ± is + in one stationary point and − in the other. After some tedious analysis (or by using

symbolic computation software), it can be verified that the expression for x in (2.4) is all-zero for

(y(7), z(7)) and (y(8), z(8)). Hence, both stationary points yield the all-zero solution. This is not the

global minimum since the solution

x =
(
a

0

)
, y =

(
1

0

)
, z =

(
1

0

)
, (A.19)

yields a lower � in (2.2) when a /= 0. �

Lemma A.5. For the stationary points (y(i), z(i)), i = 1, . . . , 6, in Table 3 the multilinear rank of X − Y

equals (2, 2, 2) almost everywhere.

Proof. Let Z = X − Y = X − x ⊗ y ⊗ z, where x is given by (2.4), y1 = z1 = 1, and (y2, z2) is a sta-

tionary point. If one of the frontal slabs Z1 and Z2 of Z is nonsingular, then the mode-1 and mode-2

ranks of Z are equal to 2. Next, we show that det(Z1) = det(Z2) = 0 corresponds to a set of measure

zero. It can be verified that

det(Z1) = z2[−(de − bg) − (ag − bh − ce + df )y2 − (ah − cf )y22 + (ad − bc)(1 + y22)z2]
(1 + y22)(1 + z22)

,

(A.20)

and

det(Z2) = (eh − fg)(1 + y22) + z2 [−(ah − cf ) + (ag − bh − ce + df ) y2 − (de − bg) y22]
(1 + y22)(1 + z22)

.

(A.21)

Suppose det(Z1) = det(Z2) = 0, i.e. the numerators of the above expressions are zero. Since z2 /=
0 almost everywhere (see Lemma A.1), we divide the numerator of det(Z1) by z2. We then obtain

two equations of the form z2 = s(y2)/t(y2). Equating both expressions for z2 yields a fourth-degree

polynomial in y2 that can be written as

[(ag − ce) y22 − (ah + bg − cf − de) y2 + (bh − df )]
× [(df − bh) y22 − (ah + bg − cf − de) y2 + (ce − ag)] = 0 . (A.22)

These two second-degree polynomials are the numerator (times −1) and denominator of (A.15). As

explained above, the roots of these polynomials are complex if�(X) < 0. In this case, it is not possible

to choose y2 and z2 such that det(Z1) = det(Z2) = 0. When �(X) > 0, the sought values of y2 are

y(7), y(8), y(9) and y(10). Therefore, in this case we may conclude that the points (y2, z2) for which

det(Z1) = det(Z2) = 0 are not among the first 6 stationary points in Table 3 almost everywhere.

Hence, themultilinear rankofZ equals (2, 2, ∗). If oneof the topandbottomslabs ofZ is nonsingular,

then also itsmode-3 rank equals 2. A proof of this can be obtained analogous as above by interchanging

the roles of x and z. This completes the proof. �

A.1. Numerical examples

Here, we illustrate the Proof of Theorem 4.1 by means of two examples. We take two random X,

one that has �(X) > 0 (orbit G2) and one that has �(X) < 0 (orbit G3).
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Our first example is

X =
[−0.4326 0.1253 −1.1465 1.1892
−1.6656 0.2877 1.1909 −0.0376

]
. (A.23)

We have �(X) = 2.7668. In the table below, we list the stationary points (y2, z2), their values of

� in (2.6), their values of �(X − Y), and state whether their Hessian matrix is positive definite or

not. Two of the stationary points (y(i), z(i)), i = 1, . . . , 6, are complex. The remaining four points are

the first four points in the table, and have �(X − Y) close to zero. The second point corresponds

to the global minimum and is also found when computing a best rank-1 approximation to X via an

alternating least squares algorithm. For Z = X − Y, the matrix Z2Z
−1
1 has a double eigenvalue 0.9185

with only one associated eigenvector. Lemma 3.1 implies that Z is in orbit D3. The last two points in

the table are the stationary points (y(7), z(7)) and (y(8), z(8)). From LemmaA.4 it follows that they have

�(X − Y) = �(X) and � = ||X||2.

y2 z2 � �(X − Y) Hessian PD

−0.592958 0.621735 5.1164 1.4166e-12 No
−0.229249 −1.08855 2.6863 9.6802e-13 Yes
2.22613 0.452035 7.1313 2.1210e-12 No
2.42488 −2.88759 6.5289 1.2999e-14 No
1.17156 1.15843 7.2081 2.7668 No
5.96728 −0.05296 7.2081 2.7668 No

Our second example is

X =
[−1.6041 −1.0565 0.8156 1.2902

0.2573 1.4151 0.7119 0.6686

]
. (A.24)

We have�(X) = −2.7309. In the table below, we list the stationary points (y2, z2) in the sameway as

in the first example. Two of the stationary points (y(i), z(i)), i = 1, . . . , 6, are complex. Since�(X) < 0,

the points (y(7), z(7)) and (y(8), z(8)) are also complex. Hence, four real stationary points are left, that all

have�(X − Y) close to zero. The first point in the table corresponds to the globalminimumand is also

found when computing a best rank-1 approximation to X via an alternating least squares algorithm.

For Z = X − Y, thematrix Z2Z
−1
1 has a double eigenvalue 1.6712with only one associated eigenvector.

Lemma 3.1 implies that Z is in orbit D3.

y2 z2 � �(X − Y) Hessian PD

0.995675 −0.598339 3.1185 1.3801e-11 Yes
−0.865475 0.0601889 8.2319 1.5479e-13 No
2.06437 1.78102 6.6050 1.6050e-13 No
−0.675154 9.24487 9.0028 2.6216e-13 No

Appendix B. Proof of Theorem 7.1

We make use of the derivations in Section 5. Let X be a generic symmetric 2 × 2 × 2 tensor (6.5).

We consider the symmetric rank-1 approximation problem (5.1). It is our goal to show that, for the

optimal solution Y = y ⊗ y ⊗ y, we haveX − Y in orbitD3. From the list of orbits in Table 2, it follows

that it suffices to show �(X − Y) = 0 and X − Y has multilinear rank (2,2,2). We will do this by

considering the stationary points of the symmetric rank-1 approximation problem.

Let Y be as in (7.2). The stationary points are given by (5.3), which can be written as

y51 + y1y
4
2 + 2 y31y

2
2 − 2 b y1y2 − a y21 − c y22=0 , (B.1)

y52 + y41y2 + 2 y21y
3
2 − 2 c y1y2 − d y22 − b y21=0 . (B.2)
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Note that the entries a, b, c, d are nonzero almost everywhere. If one of y1 and y2 is zero, it follows that

both are zero almost everywhere. Since this corresponds to an all-zero Y, which is not the optimal

solution, we may assume that y1 /= 0 and y2 /= 0 almost everywhere.

Multiplying (B.2) by y1 and subtracting y2 times (B.1) yields

−b y31 + (a − 2c) y21y2 + (2b − d) y1y
2
2 + c y32 = 0 . (B.3)

Defining z = y1/y2 and dividing (B.3) by y32, we obtain

−b z3 + (a − 2c) z2 + (2b − d) z + c = 0 . (B.4)

This yields three solutions for z = y1/y2, two of which may be complex. For each solution z, the

corresponding stationary point (y1, y2) satisfying (B.1) and (B.2) is given by

y1 = z y2 , y32 = a z2 + 2 b z + c

z5 + 2 z3 + z
= b z2 + 2 c z + d

z4 + 2 z2 + 1
, (B.5)

where the latter equality is equivalent to (B.4). The polynomial (B.4) determining the stationary points

is also reported by [9, Section 3.5].

Next, we consider the hyperdeterminant �(X − Y). For y1 = z y2, we have

X − Y =
[
a − z3 y32 b − z2 y32 b − z2 y32 c − z y32

b − z2 y32 c − z y32 c − z y32 d − y32

]
. (B.6)

Using (6.6), we obtain

�(X − Y) = �(X) + f (z) y32 + (a − 3 b z + 3 c z2 − d z3)2 y62 , (B.7)

with

f (z) = [−4 b3 + 6 abc − 2 a2d] + z [6 b2c − 12 ac2 + 6 abd]
+z2 [6 bc2 − 12 b2d + 6 acd] + z3 [6 bcd − 2 ad2] . (B.8)

We substitute the second expression for y32 in (B.5) into (B.7) and multiply by (z4 + 2 z2 + 1)2. After
some tedious analysis (or by using symbolic computation software), it can be verified that this yields

(−b z3 + (a − 2c) z2 + (2b − d) z + c) P(z) , (B.9)

where P(z) is a seventh-degree polynomial in z. By (B.4), the expression (B.9) is identical to zero. Hence,

for all three stationary points (y1, y2), we have �(X − Y) = 0.

In the final part of the proof, we show that X − Y has multilinear rank (2, 2, 2) almost everywhere.

Since the mode-n ranks of symmetric tensors are equal for eachmode, it suffices to show that the two

slabs of (B.6) are nonsingular almost everywhere. Let Z = X − Y. We have

det(Z1) = (ac − b2) + y32 (−c z3 + 2 b z2 − a z) , (B.10)

det(Z2) = (bd − c2) + y32 (−d z2 + 2 c z − b) . (B.11)

Hence, det(Z1) = det(Z2) = 0 implies

(bd − c2)(c z3 − 2 b z2 + a z) + (ac − b2)(d z2 − 2 c z + b) = 0 , (B.12)

which can be written as

z3 [bcd − c3] + z2 [2 bc2 + acd − 3 b2d] + z [2 b2c + abd − 3 ac2] + [abc − b3] = 0 . (B.13)

Since the third-degree polynomials (B.4) and (B.13) do not have generically common roots, it follows

that at least one of the slabs Z1 and Z2 is nonsingular almost everywhere. As explained above, this

implies that X − Y has multilinear rank (2, 2, 2) almost everywhere. This completes the Proof of

Theorem 7.1.
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Appendix C. Orbits D3 and G3 of real symmetric 2 × 2 × 2 tensors

Here, we show that any real symmetric 2 × 2 × 2 tensor X in orbit D3 or G3 is related to the

canonical form Y of the orbit by an invertible multilinear transformation (S, S, S) · Y = X.

First, we consider orbit D3, which is defined by symmetric rank 3, multilinear rank (2,2,2), and

hyperdeterminant � = 0. It follows from the Proof of Proposition 6.3 that we may assume without

loss of generality that X in orbit D3 has the form

X =
[
a 1 1 1

1 1 1 d

]
, (C.1)

with

�(X) = a2d2 − 6ad + 4a + 4d − 3 = 0 . (C.2)

Our goal is to find a nonsingular

S =
[
s1 s2
s3 s4

]
, (C.3)

such that (S, S, S) · Y = X, where the canonical form Y of orbit D3 is given in Table 2, i.e.

(S, S, S) ·
[
0 1 1 0

1 0 0 0

]
=
[
a 1 1 1

1 1 1 d

]
. (C.4)

This yields the following four equations:

3 s21s2 = a , 3 s23s4 = d , (C.5)

s21s4 + 2 s1s2s3 = 1 , s2s
2
3 + 2 s1s3s4 = 1 . (C.6)

Note that the case a = d = 1 has� = 0 but yieldsmultilinear rank (1, 1, 1) and, hence, is not included
in orbit D3. The case a = 0, d = 3/4 is in orbit D3 and its solution of (C.5) and (C.6) is

S =
[

1 0

1/2 1

]
. (C.7)

The case a = 3/4, d = 0 can be treated analogously. In the remaining part of the proof we assume

a /= 0 and d /= 0. This implies that all entries of S are nonzero. From (C.2) it follows that

d = 3 a − 2 ± 2 (1 − a)
√

1 − a

a2
. (C.8)

Hence, we must have a < 1. Since (C.2) is symmetric in a and d, also d < 1 must hold.

Next, we solve the system (C.5) and (C.6). From (C.5) we get s2 = a/(3 s21) and s4 = d/(3 s23).
Substituting this into (C.6) yields, after rewriting,

d

3

(
s1

s3

)3

=
(
s1

s3

)
− 2 a

3
,

d

3

(
s1

s3

)3

= 1

2

(
s1

s3

)2

− a

6
. (C.9)

We equate the right-hand sides of (C.9), which yields(
s1

s3

)
= 1 ± √

1 − a . (C.10)

Substituting this into one equation of (C.9) gives us

d = 3 − 2 a ± 3
√

1 − a(
1 ± √

1 − a
)3 . (C.11)

It can be verified that this expression for d is identical to (C.8). Hence, Eq. (C.10), together with s2 =
a/(3 s21) and s4 = d/(3 s23), solves the system (C.5) and (C.6). Note that since both tensors in (C.4) have
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multilinear rank (2,2,2), it follows that S is nonsingular. Hence, we have shown that for any X in orbit

D3 there exists a nonsingular S such that (S, S, S) · Y = X, where Y is the canonical form of orbit D3.

Next, we consider orbit G3, which is defined by symmetric rank 3, multilinear rank (2,2,2), and

hyperdeterminant � < 0. As above, we may assume that X in G3 has the form (C.1) with

�(X) = a2d2 − 6ad + 4a + 4d − 3 < 0 . (C.12)

It is our goal to find nonsingular S in (C.7) such that

(S, S, S) ·
[−1 0 0 1

0 1 1 0

]
=
[
a 1 1 1

1 1 1 d

]
, (C.13)

where the former tensor is the canonical form of orbit G3 as given in Table 2. This yields the following

four equations:

−s31 + 3 s1s
2
2 = a , −s33 + 3 s3s

2
4 = d , (C.14)

−s21s3 + 2 s1s2s4 + s22s3 = 1 , −s1s
2
3 + 2 s2s3s4 + s1s

2
4 = 1 . (C.15)

The case a = 0, d < 3/4 has solution s1 = 0, s33 = 3/4 − d > 0, s22 = 1/s3, s
2
4 = 1/(4 s3), with

det(S) = −√
s3 < 0. The case a < 3/4, d = 0 can be treated analogously. In the remaining part of

the proof we assume a /= 0 and d /= 0. This implies that s1 and s3 are nonzero. Note that a = 1 implies

� = (d − 1)2, which is not in orbit G3. Analogously, d = 1 is not in orbit G3 either. In fact, � < 0

implies a < 1 and d < 1.

Next, we solve the system (C.14) and (C.15). Expressions for s2 and s4 are obtained from (C.14) as

s22 = s31 + a

3 s1
, s24 = s33 + d

3 s3
. (C.16)

Eq. (C.15) can be written as

2 s2s4 = 1 + s21s3 − s22s3

s1
, 2 s2s4 = 1 + s1s

2
3 − s1s

2
4

s3
. (C.17)

Equating the right-hand sides and substituting (C.16) yields, after rewriting,

d

(
s1

s3

)3

− 3

(
s1

s3

)2

+ 3

(
s1

s3

)
− a = 0 . (C.18)

The discriminant of this third-degree polynomial equals −27� > 0, which implies that (C.18) has

three distinct real roots. Let s1 = α s3, where the root α satisfies

d α3 = 3α2 − 3α + a . (C.19)

Substituting s1 = α s3 and (C.16) into the first equation of (C.15) yields

4 s33 (d α4 + 2aα − 3α2) = 9 − 6a/α + a2/α2 − 4ad α . (C.20)

Using (C.19), this can be rewritten as

s33 = α (3 − d α)2 − 4ad

12 (α2 − 2α + a)
. (C.21)

It remains to verify that the expressions (C.16) are nonnegative. Our proof is tedious and long. Below,

we give a summary of it. The full proof is available on request.

Substituting (C.21) and using (C.19), it can be shown that the expressions (C.16) are nonnegative if

P1(α) = α2 (4 − 3d) + α (ad − 3) + a� 0 , P2(α) = −d α2 + α (3 − ad) − a� 0 . (C.22)

Note that P1 + P2 = 4α2 (1 − d) > 0. Also, the leading coefficient of P1 is always positive. The roots

of P1 are given by

r1 = 3 − ad − √
a2d2 + 6ad − 16a + 9

2 (4 − 3d)
, r2 = 3 − ad + √

a2d2 + 6ad − 16a + 9

2 (4 − 3d)
. (C.23)
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The roots of P2 are given by

r3 = ad − 3 − √
a2d2 − 10ad + 9

−2d
, r4 = ad − 3 + √

a2d2 − 10ad + 9

−2d
. (C.24)

Let P3(x) = d x3 − 3 x2 + 3 x − a. To prove (C.22), we focus on the sign of P3 in the roots r1, r2, r3, r4.

When the discriminant of P1 is nonnegative, we can distinguish three cases. In these cases, the sign of

P3 in the roots r1 and r2 is as follows:

case I : a > 0 and a2d > −3a + 4a
√

a ⇒ P3(r1) � 0 P3(r2) � 0 , (C.25)

case II : a > 0 and a2d < −3a − 4a
√

a ⇒ P3(r1) � 0 P3(r2) � 0 , (C.26)

case III : a < 0 ⇒ P3(r1) � 0 P3(r2) � 0 . (C.27)

When the discriminant of P2 is nonnegative, we have

P3(r4) � 0 , P3(r3)

{
� 0 if d > 0 ,
� 0 if d < 0 .

(C.28)

Suppose d > 0. Then the leading coefficient of P2 is negative and its discriminant is positive (since

a < 1 and d < 1). Hence, P2 has real roots. Recall that the leading coefficient of P1 is always positive.

Suppose the roots of P1 are real. Then we are in case I or case III (since case II implies d < 0). Since

P1 + P2 > 0, there must hold r4 � r1 � r2 � r3. From (C.25), (C.27), and (C.28), it follows that P3 has a

root α in the interval [r4, r1] for which (C.22) holds. If the roots of P1 are not real, then (C.28) implies

that P3 has a root α in the interval [r4, r3] for which (C.22) holds.

Suppose next that d < 0. Then the leading coefficients of P1 and P2 are positive. Suppose P1 and

P2 both have real roots. Since P1 + P2 > 0, there must hold either r3 � r4 � r1 � r2 or r1 � r2 � r3 � r4.

From (C.25) to (C.28) we obtain the following. Suppose we are in case I or case III. If r3 � r4 � r1 � r2,

then P3 has a root α in the interval [r4, r1] for which (C.22) holds. If r1 � r2 � r3 � r4, then P3 has a

root α in the interval [r2, r3] for which (C.22) holds. Suppose we are in case II. Then P3(r3) � 0 and

P3(r1) � 0. From the shape of P3 it follows that it has a root α � r3 if r3 � r4 � r1 � r2, or a root α � r1 if

r1 � r2 � r3 � r4. In both situations, we have (C.22) for this root α.

When d < 0 and P1 does not have real roots, (C.28) implies that P3 has a rootα � r3 forwhich (C.22)

holds. When d < 0 and P2 does not have real roots, (C.25)–(C.27) imply that P3 cannot have all three

roots in the interval [r1, r2]. Hence, there exists a root α for which (C.22) holds. Finally, it can be shown

that P1 and P2 cannot both have complex roots when a < 1 and d < 1.

Hence, we have shown that the system (C.14) and (C.15) is solved by (C.16), (C.21), and s1 = α s3,

where α is a root of P3 satisfying (C.22). In numerical experiments we found that any root of P3
satisfies (C.22). Note that since both tensors in (C.13) have multilinear rank (2,2,2), it follows that S is

nonsingular. Hence, we have shown that for any X in orbit G3 there exists a nonsingular S such that

(S, S, S) · Y = X, where Y is the canonical form of orbit G3.
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