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1. Introduction

Tensors of order d are defined on the outer product of d linear spaces, Sy, 1 < £ < d. Once bases of
spaces Sy are fixed, they can be represented by d-way arrays. For simplicity, tensors are usually assim-
ilated with their array representation. We assume throughout the following notation: underscored
bold uppercase for tensors e.g. X, bold uppercase for matrices e.g. T, bold lowercase for vectors e.g. a,
calligraphic for sets e.g. S, and plain font for scalars e.g. Xjj, Tjj or a;. In this paper, we consider only
third-order tensors. The three spaces of a third-order tensor are also referred to as the three “modes".

Let X be a third-order tensor defined on the tensor product S; ® S, ® Ss3. If a change of bases is
performed in the spaces Sy, Sy, S3 by invertible matrices S, T, U, then the tensor representation X is
transformed into

X:(SvTrU)'Xr (1.1)

whose coordinates are given by )?,-jk = > pgr Sip Tjq Ukr Xpqr- This is known as the multilinearity property
enjoyed by tensors. Matrices, which can be associated with linear operators, are tensors of order 2.
The multilinear transformation (1.1) is also denoted as

X:quoquU, (12)

where e, denotes the multiplication (or contraction) operator in the £th mode of X, and S, T, U are
contracted in their second index. Note that the matrix multiplication STU” canbe denotedasT o1 S o,
U =T e, U e, S.For two contractions with matrices in the same mode, we have theruleX oy T oy S =
X oy (ST), see e.g. [9, Section 2].

The rank of a tensor X is defined as the smallest number of decomposable tensors whose sum
equals X, i.e. the smallest R such that

R
X=>a,8bQc. (1.3)

r=1

Hence a rank-1 tensor X is the outer product of vectors a, b, ¢ and has entries Xjx = a;bjck. The
decomposition of a tensor into a sum of outer products of vectors and the corresponding notion of
tensor rank were first introduced and studied by [14,15].

Tensors play a wider and wider role in numerous application areas including blind source sepa-
ration techniques for Telecommunications [26,27,6,11,8], Arithmetic Complexity [21,34,1,32], or Data
Analysis [13,2,28,20]. In some applications, tensors may be symmetric only in some modes, or may
not be symmetric nor have equal dimensions. In most applications, the decomposition of a tensor
into a sum of rank-1 terms is relevant, since tensors entering the models to fit have a reduced rank.
For example, such a tensor decomposition describes the basic structure of fourth-order cumulants of
multivariate data on which a lot of algebraic methods for Independent Component Analysis are based
[3,10]. For an overview of applications of tensor decompositions, refer to [18].

An important advantage of using tensor decompositions of order 3 and higher, is that the decom-
position is rotationally unique under mild conditions [21,32]. This is not the case for most matrix
decompositions e.g. Principal Component Analysis. However, the manipulation of tensors remains
difficult, because of major differences between their properties when we go from second order to
higher orders. We mention the following: (i) tensor rank often exceeds dimensions, (ii) tensor rank
can be different over the real and complex fields, (iii) maximal tensor rank is not generic, and is
still unknown in general, (iv) generic tensor rank may not have a single value over the real field, (v)
computing the rank of a tensor is very difficult, (vi) a tensor may not have a best rank-R approximation
for R > 2. For (i)-(v), see e.g. [22,12,7]. For (iv), see e.g. [36,37]. For (vi), see e.g. [29-31,12,19,33]. A
discussion specifically focussed on symmetric tensors can be found in [7].

In [12] it is shown that (vi) holds on a set of positive measure. It is recalled in [7,12] that any tensor
has a best rank-1 approximation. However, it has been observed numerically in [17, Section 7] that a
best or “good" rank-R approximation cannot be obtained by consecutively computing and subtracting
R best rank-1 approximations. The reason for this is that subtracting a best rank-1 approximation
generally does not decrease tensor rank. Hence, the deflation technique practiced for matrices (via the
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Singular Value Decomposition) cannot generally be extended to higher-order tensors. A special case
where this deflation technique works is when the tensor is diagonalizable by orthonormal multilinear
transformation; see [17, Section 7].

In this paper, we provide a mathematical treatment of the (in)validity of arank-1 deflation procedure
for higher-order tensors. We consider 2 x 2 x 2 tensors over the real field. For such a tensor X, let the
frontal slabs be denoted as X; and X;. Our main result is for generic tensors X, which have rank 2 if
XoXi ! has distinct real eigenvalues, and rank 3 if XX ! has complex eigenvalues. We show that for
generic X, subtraction of a best rank-1 approximation Y yields a tensor Z = X — Y of rank 3. Hence,
for a typical X of rank 3 this does not affect the rank, and for a typical X of rank 2 this has increased the
rank. In fact, we show that Z lies on the boundary between the rank-2 and rank-3 sets, i.e. Z,Z; ! has
identical real eigenvalues. The result that subtraction of a best rank-1 approximation yields identical
eigenvalues is new and expands the knowledge of the topology of tensor rank. Also, we show that the
same result holds for symmetric 2 x 2 x 2 tensors. Based on numerical experiments we conjecture
that the results can be extended to p X p x 2 tensors over the real field.

The above contributions are new to the literature on best rank-1 approximation of higher-order
tensors. The latter includes best rank-1 approximation algorithms [9,38,17], conditions under which
the best rank-1 approximation is equal to the best symmetric rank-1 approximation [24], and a relation
between the best symmetric rank-1 approximation and the notions of eigenvalues and eigenvectors
of a symmetric tensor [5,25].

This paper is organized as follows. In Section 2, we introduce the best rank-1 approximation problem
for third-order tensors, and state first-order conditions for the optimal solution. Next, we consider
2 x 2 x 2 tensors. Section 3 contains rank criteria and orbits for 2 x 2 x 2 tensors. In Section 4, we
present examples and general results for subtraction of a best rank-1 approximation froma2 x 2 x 2
tensor. In Sections 5-7, we discuss the special case of symmetric tensors. Section 5 provides first-order
conditions for the best symmetric rank-1 approximation of a symmetric third-order tensor. Section 6
contains rank criteria and orbits of symmetric 2 x 2 x 2 tensors. These results are used in Section 7,
when studying the subtraction of a best symmetric rank-1 approximation from a symmetric2 x 2 x 2
tensor. Section 8 contains a discussion of our results. The proofs of our main results are contained in
appendices.

2. Best rank-1 approximation

We consider the problem of finding a best rank-1 approximation to a given third-order tensor
X € Rd1xd2xds o

minxeR’i1,yeRd2,zeRd3 ||§—x®y®z||2, (2.1)

where || - || denotes the Frobenius norm, i.e. ||X]||? = ik |X,~jk|2. Since the set of rank-1 tensors is
closed, problem (2.1) is guaranteed to have an optimal solution [12, Proposition 4.2]. Note that the
vectors X, y, z of the rank-1 tensor (x ® y ® z) are determined up to scaling. One could impose two of
the vectors to be unit norm.

Let U(x,y,z) = ||X — X ® y ® z||%. Then ¥ can be written as

W= [X|]* —2X o1 x" &2 y" e32" +|Ix|[[lylI?|I2I I . (2.2)

Hence, the minimization problem (2.1) is equivalent to minimizing (2.2). Using this fact, and setting
the gradients of W with respect to the vectors X, y, z equal to zero, we obtain the following equations:

Xeoyy' o3z’ Xeo x o32z' Xeo x oy’
= ST 22 " “T 2wl " (2.3)
[y!l=]1z] [1x[1]|z[| [1x[1]ly!]
Substituting
Xeo,y o3z
_ L, (2.4)

|lyl2]1z][?
into the last two equations of (2.3), we obtain



A. Stegeman, P. Comon / Linear Algebra and its Applications 433 (2010) 1276-1300 1279

Xe3z')e; (Xe3z) ey =2y, Xery')e; (Xery')esz' =pz, (2.5)

where A = [|x||2||y||%||z||* and i = ||x||?||y]|*||z||%. Hence, y is an eigenvector of the matrix (X o3
z") o1 (X o3 z!) and z is an eigenvector of the matrix (X o3 y7) o1 (X o5 y7).
Substituting (2.4) into (2.2) yields

Xeoyy  o32") 01 (X oy 032) X o2y @327

Iyl l1zI? IIylI* l1zIf?

Hence, a best rank-1 approximation (x ® y ® z) of X is found by minimizing (2.6) over (y, z) and
obtaining x as (2.4). The stationary points (y, z) are given by (2.5), which can also be written as

= |X|]* — = |IX||* - (2.6)

X o vT 0s 2T |2
(Xeoyy 032') 01 (X 03 ZT)=% y, (2.7)
y
X ey e327|2
Xeory 032') 01 (X o) yT)z% z. (2.8)
z

Next, we consider transformations of the best rank-1 approximation. The following well-known
result states that a best rank-1 approximation is preserved under orthonormal multilinear transfor-
mation.

Lemma 2.1. Let S, T, U be orthonormal matrices. If a tensor X admits Y as a best rank-1 approximation,
then (S, T, U) - Y is a best rank-1 approximation of (S, T,U) - X.

Proof. Let Y = X ® y ® z be a best rank-1 approximation of X, and let X = (S, T,U) - X. Since or-
thonormal transforms leave the Frobenius norm invariant, we obtain the following analogue of (2.2):

IX—X®@YRZ|*=|IXII*> —2X o1 X" 0§ 32" + [IX]1|I§]I*]1ZI/>

=|X|I> —2X o1 (X'S) o, (§'T) o3 (Z'U) + [IS"||*|IT"§|[*||U"Z||*.
(2.9)

Hence, since (x,y, z) is a minimizer of (2.2), it follows that (Sx, Ty, Uz) is a minimizer of (2.9). In other
words, a best rank-1 approximation of X is given by (Sx ® Ty ® Uz). [

As we will see later, most tensors have multiple locally best rank-1 approximations, with one
of them being better than the others (i.e., a unique global best rank-1 approximation). Our final
result in this section states a condition under which there exist infinitely many best (global) rank-1
approximations.

Proposition 2.2. Let X be such that the matrix (X e3 z!) is orthogonal for any nonzero vector z, and
(X o5 y") is orthogonal for any nonzero vector y. Then X has infinitely many best rank-1 approximations.

Proof. The proof follows from Eq. (2.5) for the stationary points (y, z). The conditions of the proposition
imply that the matrices (X e3z') o7 (X 032') and (X o5 y') o1 (X o5 y') are proportional to the
identity matrix for any nonzero y and z. Therefore, any vector is an eigenvector of these matrices, and
(2.5) holds for any nonzero y and z.

Since any (y, z) (with nonzero y and z) is a stationary point of minimizing (2.6), it follows that the
latter is constant. We conclude that any (x ® y ® z) with x as in (2.4), is a best rank-1 approximation
of X. [

Below is a 2 x 2 x 2 example satisfying the conditions of Proposition 2.2. We denote a tensor X
with two slabs X7 and X as [X; | X2 ].
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Example 2.3. Let

1 0|0 -1
X:[O 1‘1 0]. (2.10)

Then for any choice of nonzero vector z, the matrix (X e3 z"), obtained by linear combination of the
above two matrix slices, is orthogonal. Also, for any nonzero vectory, the matrix (X e, y’) is orthogonal.
Hence, X has infinitely many rank-1 approximations. One can verify that each rank-1 approximation
(X @ y ® z) with x as in (2.4), satisfies [|[X —x Q@ y @ z||*> = 3.

The tensor (2.10) has rank 3 and is studied in [35] where it is shown that it has no best rank-2
approximation, the infimum of ||X — Y||? over Y of rank at most 2 being 1. A more general result is
obtained in [12] where it is shown thatno 2 x 2 x 2 tensor of rank 3 has a best rank-2 approximation.
In [29] it is shown that any sequence of rank-2 approximations Y™ for which [|1X — y® [|? converges
to the infimum of 1, features diverging components.

3. Rank criteria and orbits of 2 x 2 x 2 tensors

It was shown in [12, Section 7] that 2 x 2 x 2 tensors (over the real field) can be transformed by
invertible multilinear multiplications (1.1) into eight distinct canonical forms. This partitions the space
R2*2%2 into eight distinct orbits under the action of invertible transformations of a tensor “from the
three sides".

Before the eight orbits are introduced, we define some concepts. Amode-nvectorofad; X dy X d3
tensor is an d, x 1 vector obtained from the tensor by varying the nth index and keeping the other
indices fixed. The mode-n rank is defined as the dimension of the subspace spanned by the mode-n
vectors of the tensor. The multilinear rank of the tensor is the triplet (mode-1 rank, mode-2 rank, mode-
3 rank). The mode-n rank generalizes the row and column rank of matrices. Note that a tensor with
multilinear rank (1, 1, 1) has rank 1 and vice versa. The multilinear rank is invariant under invertible
multilinear transformation [12, Section 2].

Related to the orbits of 2 x 2 x 2 tensors is the hyperdeterminant. Slab operations on [X; | X3 ]
generate new slabs of the form A X; + Ay X5. There holds

det(X; + X3) — det(X7 — X3)

det(h1 Xq + A2 Xp) = A2 det(X1) + A Ap 5

+ A3 det(Xy) .
(3.1)

The hyperdeterminant of X, denoted as A (X), is defined as the discriminant of the quadratic polynomial
(3.1):

— 4det(Xy) det(Xy) . (3.2)

det(X; + Xp) — det(X; — X3) T
2

AX) = [

Hence, if A(X) is nonnegative, then a real slabmix exists that is singular. If A(X) is positive, then
two real and linearly independent singular slabmixes exist. It follows from (3.1) and (3.2) that the
hyperdeterminant is equal to the discriminant of the characteristic polynomial of det(X;)X,X; Uor

det(X2)X1X; ! The sign of the hyperdeterminant is invariant under invertible multilinear transfor-
mation [12, Section 5].

Table 1 lists the canonical forms for each orbit as well as their rank, multilinear rank and hyperde-
terminant sign. Generic 2 x 2 x 2 tensors have rank 2 or 3 over the real field, both on a set of positive
measure [22,36].

For later use, we state the following rank and orbit criteria. The rank criteria have been proven for
p X p X 2 tensors in [16]. The 2 x 2 x 2 orbits can be found in [12, Section 7]. In the sequel, we will
use this result to verify the orbit of a2 x 2 x 2 tensor.
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Table 1

Orbits of 2 x 2 x 2 tensors under the action of invertible multilinear transformation (S, T, U)
over the real field. The letters D and G stand for “degenerate” (zero volume set in the
eight-dimensional space of 2 x 2 x 2 tensors) and “typical” (positive volume set), respectively.

Canonical form Tensor rank Multilinear rank Sign A
N 000) 0
Dy : ::) g g 8: 1 (1,1,1) 0
Dy : _(]) []] g 8_ 2 (2,2,1) 0
D, : g) ol ; 2 (122) 0
Dy : :(1) g (]) g: 2 (2,1,2) 0
Gy : _(]) g g (1)_ 2 (2.2,2) F
Ds : _(]) :] (1) 8_ 3 (2,2,2) 0
Gs : __0] (1) ‘ (1) ;} 3 (2.2.2) =

Lemma 3.1. Let X be a2 x 2 x 2 tensor with slabs Xy and X;, of which at least one is nonsingular.

(1) If XXy Lor XiX; ! has real eigenvalues and is diagonalizable, then X is in orbit G,.

(ii) If XoX| Yor XiX; ! has two identical real eigenvalues with only one associated eigenvector, then
X is in orbit D3.

(iii) Iszxl_l or X1X2_1 has complex eigenvalues, then X is in orbit Gs.

4. Best rank-1 subtraction for 2 x 2 x 2 tensors

For 2 x 2 x 2 tensors X in the orbits of Table 1, we would like to know in which orbit X — Y is
contained, where Y is a best rank-1 approximation of X. In this section, we present both examples and
general results. We begin by formulating our main result. It is not a deterministic result, but involves
generic 2 X 2 X 2 tensors, which are in orbits G, and Gs. Any tensor randomly generated from a
continuous distribution can be considered to be typical. The full Proof of Theorem 4.1 is contained in
Appendix A.

Theorem 4.1. For almost all 2 x 2 x 2 tensors X, and all best rank-1 approximations Y of X, the tensor
X — Yisin orbit Ds3.

Proof sketch. We proceed as in the first part of Section 2. We show that there are eight stationary points
(y, z) satisfying (2.7) and (2.8), and that these can be obtained as roots of an eighth-degree polynomial.
There are two stationary points that yield x = 0 in (2.4), and do not correspond to the minimum of
(2.2). For the other six stationary points, we have A(X — Y) = 0, where Y is the corresponding rank-1
tensor. Finally, we show that the multilinear rank of X — Y equals (2,2,2) for these six rank-1 tensors Y.
Hence, it follows that the best rank-1 approximation Y satisfies A(X — Y) = 0 and that the multilinear
rank of X — Y is equal to (2,2,2). From Table 1 it then follows that X — Y is in orbit D3. [

Hence, for typical tensors in orbit G,, subtracting a best rank-1 approximation increases the rank to 3.
For typical tensors in orbit Gs3, subtracting a best rank-1 approximation does not affect the rank. This
is completely different from matrix analysis.
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In the Proof of Theorem 4.1 in Appendix A, it is shown that the slabs of Z = X — Y are nonsingular
almost everywhere. From Lemma 3.1 it follows that Z221_1 has identical real eigenvalues and is not

diagonalizable, while XX 1 has either distinct real eigenvalues or complex eigenvalues. Hence, the
subtraction of a best rank-1 approximation yields identical real eigenvalues.

Next, we consider X in other orbits, and present deterministic results. We have the following result
for the degenerate orbits of ranks 1 and 2.

Proposition 4.2. Let X be a2 x 2 x 2 tensor, and let Y be a best rank-1 approximation of X.

(i) If X is in orbit Dy, then X — Y is in orbit Dg.
(i) If X is in orbit Dy, D), or D}, then X — Y is in orbit Dy.

Proof. For X in orbit D1 it is obvious that Y = X is the unique best rank-1 approximation. Then X — Y
is in orbit Dg.

Next, let X be in orbit D,. Then there exist orthonormal S, T, U such that

A 0|0 O

0 un ‘ 0 0]’
see [12, Proof of Lemma 8.2]. Subtracting a best rank-1 approximation from this tensor results in A or
/1 being set to zero (whichever has the largest absolute value; for A = u there are two best rank-1
approximations). Hence, the result is a rank-1 tensor. From Lemma 2.1 it follows that the same is
true for subtracting a best rank-1 approximation from X. For X in orbits D} and D) the proof is
analogous. [

(STU) - X = [ (4.1)

For X in orbit G, or D3, the tensor X — Y is not restricted to a single orbit. The following examples
illustrate this fact.

Example 4.3. Let

1 0|0 0
X=[0 0lo 1]' (42)

which is the canonical tensor of orbit G, in Table 1. It can be seen that X — Y is in Dy (the only nonzero
entry of Y is either Y111 or Yo22).
On the other hand, consider

=[5 9

For this tensor, Xo X ! has two distinct real eigenvalues. Hence, by Lemma 3.1, the tensor is in orbit
G». It can be shown that X has a unique best rank-1 approximation Y and that

0 1|1 0
1000]' (4.4)

which is the canonical tensor of orbit D3 in Table 1.

X—X=[

Example 4.4. It follows from Lemma 3.1 that the following tensors are in orbit D3:
2 010 1 1 0|0 1 1 0|0 2 (45
o o(1 oOf |O 0|2 o |O O|1 OFf )

Subtracting the best rank-1 approximation Y from these tensors amounts to replacing the element 2
by zero. Hence, X — Y is in orbit D,, D), and DY, respectively.

On the other hand, it can be verified numerically or analytically that for X equal to the canonical
tensor of orbit D3 in Table 1, we have X — Y also in orbit D3. Moreover, numerical experiments show
that for a generic X in orbit D3, we have X — Y in orbit D3 as well. This suggests the following.
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Conjecture 4.5. For almost all tensors X in orbit D3, and all best rank-1 approximations Y of X, the tensor
X —YisinDs.

The tensor X in Example 2.3 is in orbit G3 by Lemma 3.1. It can be shown that any of the infinitely
many best rank-1 approximations of X yields X — Y in orbit D3 (proof available on request). The
example below yields the same result for another X in orbit G3. Numerically and analytically, we have
not found any X in orbit G3 for which X — Y is not in orbit Ds.

Example 4.6. Let

[0 )

Since X2X1_l has complex eigenvalues, X is in orbit G3 by Lemma 3.1. It can be verified that X has a
unique best rank-1 approximation such that

1 0/0 0
X_Xz[o 111 0]' (47)

The latter tensor can be transformed to the canonical form of orbit D3 by swapping rows within each
slab (i.e., by applying a permutation in the first mode).

Our next result concerns tensors with diagonal slabs, i.e.

«=[s o|c 9

Then X has rank at most 2, since

1 1 a 0 0 d
Qo))+ (o (o)
Also, if ah # de, then X = (I, I, U) - X, where X is the canonical tensor of orbit G, in Table 1, and
U= [a d]_ (4.10)

Hence, in this case X is in orbit G5.

We show that, for 2 x 2 x 2 tensors with diagonal slabs, we have X — Y in orbit D;. Naturally, the
same holds for X that can be transformed to a tensor with diagonal slabs by orthonormal multilinear
transformation (see Lemma 2.1). Note that tensors with diagonal slabs in orbit G, form an exception to
the result of Theorem 4.1, as does the canonical tensor of orbit G, (see Example 4.3). However, Theorem
4.1 states that these exceptions form a set of measure zero.

Proposition 4.7. Let X be a 2 x 2 x 2 tensor with diagonal slabs and rank 2, and let Y be a best rank-1
approximation of X. Then X — Y is in orbit Dy .

Proof. We use the first part of Section 2. Let X be as in (4.8). First, we assume a*> + ¢* < d? + h%. For

0 0|0 0
XZ[O d‘o h]’ (411)

we have ||X — Y||> = a*> 4+ % and X — Y in orbit D;. Next, we show that (4.11) is the unique best
rank-1 approximation of X. Using (2.6), the equation ||X — Y||? <a? + e can be written as

(@ + 1) ] +¥5) (7] + 2) <(ay1z1 + ey122)* + (dyaz1 + hya22)°, (412)
which can be rewritten as

(@ + 1 —® — )y (22 +22) + (ez1 — azy)*y? + (hzy — dzp)? ¥ <0. (4.13)
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Since (d*> 4+ h? — a® — e?) is positive by assumption, and y nor z can be all-zero, it follows that (4.13)
can only hold with equality, that is, for y; = 0 and hz; = dz;. Using (2.4), it then follows that the Y
for which we have equality in (4.13) is given by (4.11). This shows that (4.11) is the unique best rank-1
approximation of X.

Next, we consider the case a? + e > d? + h?. Analogous to the first part of the proof, it can be
shown that

a 0
X2[0 0

e O
0 O}' (4.14)
is the unique best rank-1 approximation of X. This implies that ||X — Y||> = d*> + h* and X — Y isin
orbit D1.

Finally, we consider the case a> 4+ e*> = d? + h?. Here, we have multiple best rank-1 approxima-
tions. Setting y; = 0in (4.13) yields (4.11) as a best rank-1 approximation. Setting y, = 0 yields (4.14)
as a best rank-1 approximation. If ah = de, then (4.13) can also be satisfied by setting ez = az, and
hzy = dzy. This yields

2 2
Y = (2 2~ | Y19 Yipd o yie o yiae) 415
Y=01t%) y3d | yiy2h  y3h (415)
It can be verified that for Y in (4.15) we have ||X — Y||> = d?> + h?* = a®> + % and X — Y in orbit D;.

O

5. Best rank-1 approximation for symmetric tensors

Here, we consider the best rank-1 approximation problem for a third-order tensor X € R¢*4*d
that is symmetric in all modes, i.e. Xjjx = Xjix = Xyji = Xixj = Xjki = Xkjj. We assume the same for the
rank-1 approximation, which yields the problem

mingpe X -y @y Qv (51)

An adaption of [12, Proposition 4.2] or [7] show that problem (5.1) always has an optimal solution.
Let W1 (y) = ||X —y ® y ® y||*. Analogous to the first part of Section 2, W, can be written as

Wy = [|X|> —2Xe1y ey 03y" +|ly|l°. (5.2)

Hence, the minimization problem (5.1) is equivalent to minimizing (5.2). Using this fact, and setting
the gradient of W, with respect to y equal to zero, we obtain

Xe;y oyy’
TR 53)
Substituting (5.3) into (5.2) yields
X o1y’ oy
Wy = X[ - (54)

[ly[14

Hence, a best symmetric rank-1 approximation (y ® y ® y) of X is found by minimizing (5.2) or (5.4)
overy. The stationary points y are given by (5.3); this was already noticed in [5, Section 2.3].

One may wonder whether the restriction to symmetry of the rank-1 approximation in (5.1) is
necessary. That is, if we solve the unrestricted problem (2.1) for symmetric X, will the best rank-1
approximation be symmetric? Numerical experiments with random symmetric X yield the following
conjecture.

Conjecture 5.1. For almost all symmetric 2 x 2 x 2 tensors X, the best rank-1 approximation Y of X is
unique and symmetric.
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However, for

-1 0|0 1
52[0 1‘1 0}' (5.5)
Proposition 2.2 holds, and infinitely many best rank-1 approximations X ® y ® z exist. Takingy # z
and x as in (2.4), then yields infinitely many asymmetric best rank-1 approximations. As in Example
2.3, one can verify that || X — X ® y ® z||?> = 3 for any best rank-1 approximation. Note that also the
symmetric rank-1 tensor withx =y =z = (—1 0) is a best rank-1 approximation of X.

6. Rank criteria and orbits of symmetric 2 x 2 x 2 tensors

Here, we consider real symmetric 2 x 2 x 2 tensors. We establish their ranks and orbits under
invertible multilinear transformation (S, S, S) - X. These transformations preserve the symmetry. The
symmetric tensor rank [7, Section 4] is defined as the smallest R such that

R
X=)a®a®ar. (6.1)
r=1
There is a bijection between symmetric d x d x d tensors and homogeneous polynomials of degree 3
in d variables. A symmetric d x d x d tensor X is associated with the polynomial

p(uy, ..., ug) = Zx,-jk ULy . (6.2)
ijk
A multilinear transformation (S, S, S) - X is equivalent to a change of variables v = Su in the associated
polynomial.

The symmetric rank of symmetric 2 x 2 x - -- X 2 tensors can be obtained from the well-known
Sylvester Theorem, which makes use of the polynomial representation [23 (Section 5),4]. For generic
symmetric 2 X 2 X --- X 2 tensors, [4] show that the Sylvester Theorem defines an algorithm to
compute a symmetric decomposition (6.1) with R equal to the symmetric rank. Below, the Sylvester
Theorem for symmetric 2 x 2 X 2 tensors is formulated.

Theorem 6.1 (Sylvester). A real symmetric 2 x 2 X 2 tensor with associated polynomial

p(ur,u2) = y3u3 +3y2Uuiuz + 3y W + Yo i3, (63)
has asymmetric decomposition (6.1) into R rank-1 terms if and only if there exists a vectorg = (g, . . ., gr)"
with

Yo cee VR

4! <o YR+

: . | &8=0, (6.4)
V3R .- V3

and if the polynomial q(uq, uy) = gg u’f + -4z u1u§_1 + g0 u§ has R distinct real roots.

For our purposes, we make use of a symmetric rank criterion similar to Lemma 3.1, formulated as
Lemma 6.2 below. The link between this rank criterion and the Sylvester Theorem will be explained
at the end of this section.

Let the entries of a symmetric 2 x 2 x 2 tensor be denoted as

a b|b ¢
X= [b c|c d]' (65)
For later use, we mention that the hyperdeterminant (3.2) of X in (6.5) is given by
A(X) = (bc — ad)® — 4(bd — c*)(ac — b?) . (6.6)

As in the asymmetric case, the sign of the hyperdeterminant is invariant under invertible multilinear
transformation (S, S,S) - X.
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Lemma 6.2. Let X be a real symmetric 2 x 2 x 2 tensor with slabs Xy and Xy, of which at least one is
nonsingular.

(1) IF XXy Lor XiX5 ! has distinct real eigenvalues, then X has symmetric rank 2.
(ii) Iszxl_1 or Xy Xz_l has identical real eigenvalues, then X has symmetric rank at least 3.
(iii) If Xo Xy Lor XiX; ! has complex eigenvalues, then X has symmetric rank at least 3.

Proof. First, we prove (i). We consider X,X; ! The proof for X1 X, Tis completely analogous. Note that

since X; is nonsingular, the symmetric rank of X is at least 2. Let X X; ! have distinct real eigenvalues
A1 and A,. Using (6.5), we have

0 1} _cz—bd ad — bc

XX‘1=[ S X= Y= ———,
2% Xy ac — b? Y ac — b?

(6.7)

which has eigenvalues

Y+ v+ 4x N Y=y +4x (65)
=, )2 = . .
2 2

It can be verified that the eigenvectors ofXZXfl area (1 A)Tand B (1 A,)T, respectively. Next, we
show that appropriate choices of &« and g yield a symmetric rank-2 decomposition (6.1) for X.

Let A contain the eigenvectors of X, X ie.

A= [a‘j{l ﬂ’iz]. (6.9)

A

Note that a symmetric rank-2 decomposition (6.1) can be denoted as X, = A Ay AT, with A, =
diag(ak1, ax2), k = 1, 2. The eigendecomposition of X2X1_1 is then given by AAzAl_l A, which is
consistent with (6.9) since A2A1_1 = diag(X1, A2). To obtain a symmetric rank-2 decomposition, it
remains to solve the equations

3 3 3 3,2
_ A _ a’ A a’h
ATlXy =A AT = « o T AIX, =AAT = 1 1. 6.10
1 1 [,33 ﬂ3A2 2 2 ﬂ3kz ,33)»% ( )

By writing out the entries of A~'X; and A~1Xy, it can be seen that a solution (c, B) exists if and only
if
aklkz —b()»l +)\.2) +c=0, b)\.])\,z —C()L] +)\2)+d=O (611)

Using (6.8), we have A1y = —xand A; + A, = y. Combined with the expressions for x and y in (6.7),
this verifies (6.11). This completes the proof of (i).

As shown in the proof of (i), if X has one nonsingular slab, say X;, and symmetric rank 2,
then X2X1_1 is diagonalizable. As also shown in the proof of (i), when szl_1 has identical real
eigenvalues it does not have two linearly independent eigenvectors and, hence, is not diagonalizable.
Therefore, in case (ii) the symmetric rank of X is at least 3. The same holds in case (iii). This completes
the proof. [

Proposition 6.3. The orbits of real symmetric2 X 2 x 2 tensors X under the action of invertible multilin-
ear transformation (S, S, S) - X, are as given in Table 2.

Proof. Let e; and e, denote the first and second column of I,. Orbit Dy corresponds to the all-zero
tensor. For X with symmetricrank 1, wehave X = a ® a ® a.There exists anonsingularSwithSa = e;.
Then (S,S,S) - X equals the canonical form of orbit D; in Table 2, which has multilinear rank (1,1,1).
Analogously, for X with symmetric rank 2, we have X = a; @ a1 ® a1 + a» ® a, ® ap, with a; and
ay linearly independent. There exists a nonsingular S with S[a; ay] = [e; e2]. Then (S, S, S) - X equals
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Table 2

Orbits of symmetric 2 x 2 x 2 tensors under the action of invertible multilinear transformation (S, S, S)
over the real field. The letters D and G stand for “degenerate” (zero volume set in the four-dimensional
space of symmetric 2 x 2 x 2 tensors) and “typical” (positive volume set), respectively.

Canonical form Symmetric rank Multilinear rank Sign A
N 0 000) 0
D : (1) g g g: 1 (11,1) 0
G (1) ol ? 2 (2.22) -
D3 : :(1) (1) (1) g: 3 (2.2,2) 0
G :*01 > (ﬂ 3 (222) -

the canonical form of orbit G, in Table 2, which has positive hyperdeterminant (6.6) and multilinear
rank (2,2,2).

Next, let X have symmetric rank 3 and decomposition (6.1) with A = [a; az a3]. No two columns
of A are proportional, since otherwise a symmetric rank-2 decomposition is possible. It follows that
there exists a nonsingular S with

a 0 1
SA:[O 8 J. (6.12)
This yields
a 1|1 1
ssox=[1 111 4 (613)

witha =1+ o« and d = 1 4+ B>. We define orbits D; and G according to whether the hyperdeter-
minant A is zero or negative, respectively. Note that A > 0 is associated with orbit G.

In Appendix C, we show that any tensor X in orbit D3 or G is related to the canonical form Y of the
orbit by an invertible multilinear transformation (§,S,S) - Y = X.

We conclude our proof by showing that the symmetric rank of real symmetric 2 x 2 x 2 tensors
is at most 3. Let X be as in (6.5). Suppose b # 0 and ¢ # 0. Then (S, S, S) - X is of the form (6.13) for
S = diag(w, n) with u® = c/b2 and n® = b/cz. Since (6.13) has the symmetric rank-3 decomposition
(6.12), the tensor X has at most symmetric rank 3.

Next, suppose b = 0 and ¢ # 0. We subtract a symmetric rank-1 tensora ® a ® awitha = y eq
from X such that (a — y3)c > 0. Denote the resulting tensor by Z. It can be verified that ZQZT1 has
distinct real eigenvalues. By Lemma 6.2 (i) it has symmetric rank 2. Combined with the subtracted
rank-1 tensor, this implies a symmetric rank-3 decomposition of X.

The case ¢ = 0 and b # 0 can be dealt with analogously. When b = ¢ = 0, a symmetric rank-2
decomposition is immediate. Hence, the symmetric rank is at most 3. [

The following corollary follows from Lemma 6.2 and Proposition 6.3. It is the full analogue of
Lemma 3.1.

Corollary 6.4. Let X be a real symmetric 2 x 2 X 2 tensor with slabs X1 and Xy, of which at least one is
nonsingular.

(i) IfXQXf1 or X1X271 has distinct real eigenvalues, then X is in orbit G,.
(ii) If Xo X, Lor XiX; ! has identical real eigenvalues, then X is in orbit Ds3.
(iii) IfX2X1_l or X1X2_1 has complex eigenvalues, then X is in orbit G3.
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Proof. Since there is only one orbit with symmetric rank 2, the proof of (i) is the Proof of Lemma 6.2
(i). Since the symmetric rank is at most 3, cases (ii) and (iii) have symmetric rank 3. As in the asym-
metric case, the hyperdeterminant (6.6) is equal to the discriminant of the characteristic polynomial
of det(X1)X2X]_1 or det(Xz)X1X2_1. Hence, case (ii) has A = 0 and corresponds to orbit D3, and case
(iii) has A < 0 and corresponds to orbit G3. [

The hyperdeterminant (6.6) is equal to the discriminant of the polynomial q(u4, uy) in the Sylvester
Theorem (Theorem 6.1) for X in (6.5) and R = 2. Indeed, we have y3 = a,y, = b,y; = cand yp = d.
The vector g = (g9, g1, 22)" should satisfy

d c b
[c b a]g:O, (6.14)

which implies
gozac—bz, g1 =bc—ad, gzzbd—cz. (6.15)

The discriminant of q(uy, uy) is given by gl2 — 4 g g» which is equal to the hyperdeterminant (6.6).
This establishes the equivalence between the Sylvester Theorem with R = 2 and the symmetric rank
criteria of Lemma 6.2.

7. Best rank-1 subtraction for symmetric 2 x 2 x 2 tensors

Here, we consider the problem of determining the rank and orbit of X — Y, where X is a symmetric
2 X 2 x 2 tensor and Y is a best symmetric rank-1 approximation of X. Obviously, if X is in orbit D1,
then X — Y is in orbit Dg. Next, we present our main result in Theorem 7.1, which is the analogue of
Theorem 4.1. It concerns generic symmetric 2 x 2 X 2 tensors, which are in orbits G, and Gs. The full
Proof of Theorem 7.1 is contained in Appendix B.

Theorem 7.1. Foralmostall symmetric2 x 2 x 2tensors X, and all best symmetric rank-1 approximations
Y of X, the tensor X — Y is in orbit D3.

Proof sketch. We proceed as in Section 5. It is shown in [9, Section 3.5] that there are three stationary
points y satisfying (5.3), and that these can be obtained as roots of a third-degree polynomial. We
show that, for all three stationary points, we have A(X — Y) = 0, where Y is the corresponding rank-
1 tensor. Finally, we show that the multilinear rank of X — Y equals (2, 2, 2) for these three rank-1
tensors Y. This suffices to conclude that X — Y is in orbit D3. [

Hence, as in the asymmetric 2 x 2 x 2 case, for typical symmetric tensors in orbit G,, subtracting
a best symmetric rank-1 approximation increases the symmetric rank to 3. For typical symmetric
tensors in orbit Gs, subtracting a best symmetric rank-1 approximation does not affect the symmetric
rank.

In the Proof of Theorem 7.1 in Appendix B, it is shown that the slabs of Z = X — Y are nonsingular
almost everywhere. From Lemma 6.2 it follows that Z,Z; ! has identical real eigenvalues, while XX
has either distinct real eigenvalues or complex eigenvalues. Hence, also for symmetric 2 x 2 x 2
tensors, the subtraction of a best rank-1 approximation yields identical real eigenvalues.

We conclude this section with examples of X in orbits G, and Gz such that X — Y is in orbit Ds3.
These examples illustrate Theorem 7.1, and are the symmetric analogues of Examples 4.3 and 4.6.

Example 7.2. Let

0 1)1 1 [0 1
X_[l 11 0]' XX, —[—1 1]' (7.1)

Since the latter has complex eigenvalues, Lemma 6.2 shows that X is in orbit G3.
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Next, we compute the best symmetric rank-1 approximation Y to X, which has the form

3 2 2 2
y — }2/1 Y1}’% }’13’5 3’133’2_ (7.2)
yiya y1y3 | Y1y3 Y3

The stationary points (5.3) are given by

6y; + 1235 + 6y1y5 — 12y1y2 — 6y5=0, (7.3)
65 + 12yiy3 + 6y1y2 — 12y1y, — 6y1=0. (7.4)

It follows that y; # 0 and y» # O (if one of them equals zero, then both are zero and Y is all-zero).
Multiplying (7.4) by y1 and subtracting (7.3) multiplied by y, yields

-3 5 —3 —4/5
6 (2 —y1) (YZ—MJM) <J’2_\/—Y1> =0. (7.5)

2 2

Hence,y, = yjory; = (—3/2 £ ﬁ/Z) y1. However, it can be verified that the latter is in contra-
diction with (7.3) and (7.4). Therefore, y, = y; and it follows from (7.3) and (7.4) that y; = y3 = 3/4.
This yields ¥ = 3/2 and

113 3|3 3 17/-3 11 1
X—2[3 33 3}' Z_X_X_Z[l 1 ‘1 —3]' (76)
Hence,
_ 0o 1
Lz = [_1 _2], (7.7)

which has a double eigenvalue —1. Hence, Z is in orbit D3 by Lemma 6.2.

Example 7.3. Let

3 1|1 1 1 _[0 1
X= [1 11 3]' XX, = [—1 4]' (78)
Since the latter has real and distinct eigenvalues, Lemma 6.2 shows that X is in orbit G,.
Analogous to Example 7.2, it can be shown that the best symmetric rank-1 approximation of X is
given by

30 11 1
X25[1 1‘1 1] (7.9)

We obtain
173 -1 -1 -1 1 0 1
The latter has a double eigenvalue —1. Hence, Z is in orbit D3 by Lemma 6.2.

8. Discussion

It is now rather well known that consecutively subtracting a best rank-1 approximation from a
higher-order tensor generally does not either reveal tensor rank nor yield a “good” low-rank ap-
proximation. A numerical example and discussion is provided in [17, Section 7]. Hence, a rank-1
deflation procedure as is available for matrices, generally does not exist for higher-order tensors.
We have given a mathematical treatment of this property for real 2 x 2 x 2 tensors. In Theorem 4.1,
we showed that subtracting a best rank-1 approximation from a generic 2 x 2 x 2 tensor (which has
rank 2 or 3) results in a rank-3 tensor located on the boundary between the sets of rank-2 and rank-3
tensors. Hence, for typical tensors of rank 2, subtracting a best rank-1 approximation increases the
rank to 3.
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A generic2 x 2 x 2 tensor X has rank 2 iszxl_1 has distinct real eigenvalues, and rank 3 iszxl_]
has complex eigenvalues; see Lemma 3.1. If Y is a best rank-1 approximation of X, thenZ =X — Y
has rank 3 and lies on the boundary between the rank-2 and rank-3 sets, i.e. Z,Z; ! has identical
real eigenvalues. The rank-2 and rank-3 orbits G, and Gs are characterized by positive and negative
hyperdeterminant A, respectively, while on the boundary we have A = 0. The result that subtraction
of a best rank-1 approximation yields identical real eigenvalues for ZyZ; Uis new and expands the
knowledge of the topology of tensor rank.

Numerical experiments yield the conjecture that for a generic real-valued p x p x 2 tensor X,
subtracting its best rank-1 approximation Y results in Z = X — Y with Z,Z; 1 having one pair of
identical real eigenvalues with only one associated eigenvector. Moreover, if the number of pairs of
complex eigenvalues ofxle_1 equals n, then 2221_1 has max(0, n — 1) pairs of complex eigenvalues.
For n = 0, this implies that X has rank p and Z has rank p + 1 [16,33, Lemma 2.2].

We also considered real symmetric2 x 2 x 2 tensors. In Lemma 6.2, we provided a symmetric rank
criterion via the eigenvalues of X,X; ! which is similar to the asymmetric case. Symmetric tensors
have rank 2 and 3 on sets of positive volume, and X, X; ! with distinct real eigenvalues implies A > 0
and orbit G, while Xp X ! with complex eigenvalues implies A < 0 and orbit G3. When XpX; ! has
identical real eigenvalues, it has A = 0 and symmetric rank 3 (orbit D3). The rank criteria of Lemma 6.2
are equivalent to the well-known Sylvester Theorem for symmetric rank 2. In Theorem 7.1, we showed
that subtracting a best symmetric rank-1 approximation from a typical symmetric tensor yields a
tensor in orbit D3, i.e. it has symmetric rank 3 and A = 0. This result is completely analogous to the
asymmetric 2 X 2 X 2 case.

Athird case notreported hereis thatof2 x 2 x 2 tensors with symmetricslabs,i.e.X12x = X211, k =
1, 2. The rank-1 approximation problem is then

mingepzepe X —y @y ®2z|°. (8.1)

We can define a symmetric slab rank analogous to the symmetric rank and propose a rank criterion
similar to Lemmas 3.1 and 6.2. Generic 2 X 2 X 2 tensors with symmetric slabs have symmetric slab
ranks 2 and 3 on sets of positive volume. Moreover, a result analogous to Theorems 4.1 and 7.1 can be
proven in this case.

Appendix A. Proof of Theorem 4.1

We make use of the first part of Section 2. Let X be a generic 2 x 2 X 2 tensor with entries

X:[‘Cl Z ; {l] (A1)

We consider the rank-1 approximation problem (2.1). It is our goal to show that, for the optimal
solution Y = x ® y ® z, we have X — Y in orbit D3. From the list of orbits in Table 1, it follows
that it suffices to show A(X —Y) = 0 and X — Y has multilinear rank (2,2,2). We will do this by
considering the stationary points of the rank-1 approximation problem. For later use, we mention that
the hyperdeterminant (3.2) of X in (A.1) is given by

A(X) = (ah — bg + de — cf)2 — 4 (ad — bc)(eh — fg) . (A.2)

We begin our proof by showing that for the best rank-1 approximation of X we have x; # 0,x; #
0,y1 # 0,y2 # 0,21 # 0 and z, # 0 almost everywhere. Due to the scaling indeterminacy in (x ®
y ® z), this implies that we may set y; = z; = 1 without loss of generality.

Lemma A.1. Let X be a generic 2 X 2 X 2 tensor with a best rank-1 approximation X Q y ® z. Then
X1 #0,x3 # 0,y1 # 0,y2 #+ 0,27 # 0,23 & 0 almost everywhere.

Proof. We show thatz; # 0 almost everywhere. The proofs for 4, y, and z, are analogous. The proofs
for x; and x; follow by interchanging the roles of x and y.
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Let ¥ be as in (2.6) and let ¥ denote (2.6) with zy = 0. Then ¥ < W is equivalent to
(@121 + by>21 + 122 + [1222)” + (121 + dyazs + 122 + hya20)’)
> (7 +2) [(ey1 + /2)” + (@1 + hy2)?], (A3)
which, after setting y; = z; = 1, can be rewritten as

(@® 4 % — e® — g% + 22, (ae + cg))
+ 2y, (ab + cd — ef — gh + z, (af + be 4 ch + dg))
+y2 (0* 4+ d® — f* — h? + 2z, (bf + dh)) > 0. (A4)

Since (bf + dh) # 0 almost everywhere, it is possible to choose z, such that the coefficient of y% is
positive. Then there is a range of values y, for which (A.4) holds. This shows that, almost everywhere,
we can find a better rank-1 approximation than setting z; = 0. This completes the proof of z; £ 0. [J

As mentioned above Lemma A.1, we set y; = z; = 1 without loss of generality. Since the optimal
X is given by (2.4), the problem of finding a best rank-1 approximation of X is now a problem in the
variables y, and z; only.

Next, we rewrite Eqs. (2.7) and (2.8) specifying the stationary points (y;, z2) as

73 [(ef +amys+ @ +8 = = 1)y — (ef +gh)]
+ 22 [(@f +be+ ch+dg)y3 +2 (ae + cg — bf — dh)y; — (f + be + ch +dg) |
+ [(@b+cd)y3 + (@ + 2 = b* — &) ys — (ab+ cd)] = 0, (A5)
and
2 [(Of + dh)y3 + (af + be + ch + dg) yo + (e + cg)
+2 [P +d = —h)y3 +2(ab+cd—ef —gh)y, + (@ + S —e® — g))]
+ [~ (bf + dh) y3 — (af + be + ch + dg) y, — (ae + cg)] = 0. (A6)

Using the expression (2.4) for x, also the hyperdeterminant (3.2) of X — Y can be written as a
function of (y,, zo) only. After some manipulations, we obtain

1+y)*(1+25) AX-Y)
= [z% [(bg — de) y% + (ag — bh — ce + df) y» + (¢f — ah)]
+ 2z, [(bc—ad—l—eh—fg)y%—i—(bc—ad—l—eh—fg)]
+ [(ah — f) 33 + (ag — bh — ce + df) y, + (de — bg)]] . (A7)

Egs.(A.5)and (A.6) specifying the stationary points (y3, z3), and the hyperdeterminant (A.7) without
the square, are of the same form: a polynomial of degree 4 in y, and z, that is quadratic in both y,
and z,. We use the result of the following lemma to compare the stationary points satisfying (A.5) and
(A.6) to the roots of (A.7).

LemmaA.2. Letf(u) = a u®> + Bu+ yandg(u) = 8 u> + € u + v besecond-degree polynomials. Then
f and g have a common root if and only if

(e — B8) (Bv — €y) = (y§ —av)®. (A8)
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Moreover, if (y8 — av) and (ee — BJ) are nonzero, the common root is given by
(Bv—€y)  (y8—av)
(y8 —av) (e —pB8)

(A9)

Proof. First, suppose f and g have a common root r. Then f(u) = «(u —r)(u —ry) and g(u) =
8(u — r)(u — rp) for some ry and r». It follows that
B=—a(@+r) e€e=-56@F+rn) y=arry v=45rr. (A.10)
Using these expressions, it can be verified that (A.8) holds, and r equals the expressions in (A.9).
Next, suppose (A.8) holds. Let f(u) = a(u — r1)(u — ) and g(u) = & (u — r3)(u — r4) for some
r1, T2, 13, T4. It follows that

B=—a(+nrn) e=-0803+ry) y=arr, v=45rry. (A1)
Substituting these expressions into (A.8) and dividing both sides by «:?8? yields
(r 413 =13 = 12) (12 (13 + 12) = 1372 (1 +12)) = (1112 = 1378)°. (A12)
This can be rewritten as
(r1 —13)(r1 —14)(ra —13)(r —14) =0, (A13)

which implies that f and g must have a common root. As above, we have the expressions (A.9) for the
common root. []

Using Lemma A.2, the stationary points (y,, z») are found as follows. Egs. (A.5) and (A.6) represent
two quadratic polynomials in y, that have a common root. Lemma A.2 states that (A.8) must hold,
where all coefficients are second-degree polynomials in z,. We rewrite this equation as stm (z) =0,
where stm is a polynomial of degree 8. The 8 roots of stm are the z, corresponding to stationary points.
For each z,, the corresponding y; is the common root given by (A.9). Hence, there are 8 stationary points
(¥2, z2), and some of these may be complex.

Instead of interpreting (A.5) and (A.6) as polynomials in y,, we may interpret them as polynomials
in z, with coefficients depending on y,. As above, the y; of the stationary points are then found by
finding the roots of an eighth-degree polynomial P;tat (y2) that is defined by (A.8). For each y;, the
corresponding z, is the common root given by (A.9). Both ways of obtaining the stationary points
necessarily yield the same result.

Analogously, we may determine the points (y», z») satisfying (A.5) and having A(X —Y) = 0 in

(A.7). The same approach yields the points satisfying (A.6) that are roots of (A.7). We denote the
eigl eigl

eighth-degree polynomials corresponding to (A.5) and the roots of (A.7) as Py " and P, . We denote
the eighth-degree polynomials corresponding to (A.6) and the roots of (A.7) as P, ;1g2 and Pelgz Using

this approach, we obtain the following relation between the stationary points and the roots of (A.7).

Lemma A.3. The points (y2, z2) satisfying two of the three equations (A.5), (A.6), root of (A.7), are related
as specified in Table 3. In particular, 6 of the 8 stationary points are roots of (A.7).

Proof. After some tedious analysis (or by using symbolic computation software), it can be verified that

PSt(zy) _ P (z;)  (eh — fg) 2 + (ah — bg + de — ¢f) z5 + (ad — bc)

Ceigl, | ’ eig2 2 ’ (A'14)
8 (29) g(z) (ad — bc) z; — (ah — bg + de — ¢f) z, + (eh — fg)
Pstat(y ) Pstat(yz) _ (df — bh) y% — (ah+ bg —de — ¢f) y2 + (ce — ag) (A15)
PSP (y;)  PSE(y;)  (ce—ag)y3 + (ah+bg — de —cf)yo + (df — bh) '
Hence, the roots z, of P$ and P %igl are identical, and so are the roots y, of P and Py €82 Also, pstat

and Pzlg have 6 of the 8 roots in common, as do PStat and Pylg This implies that the z-values of
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Table 3
Schedule of points (y2, z2) satisfying each pair of the Egs. (A.5), (A.6), root of (A.7). Eqs. (A.5) and (A.6) describe stationary points,
while the roots of (A.7) have A(X — Y) = 0. As can be seen, the points (y®,z®),i=1,..., 6, satisfy all three equations.

(A.5) and (A.6) y® y@ y® y@ y® y© y@ y®
2 72 23 74 25 2(6) 7z 28

(A.5) and root of (A.7) y(l) y(2) y(3) y(4) y(5) y(ﬁ) y(9) y(10)
2D 72 203 74 25 2(6) 7 2(8)

(A.6) and root of (A.7) y(l) y(Z) y(3) y(4) y(5) y(G) y(7) y(S)
2 ) 20 2@ 25 26 o) 2(10)

the stationary points coincide with the z,-values of the points satisfying (A.5) that are roots of (A.7).
Analogously, the y,-values of the stationary points coincide with the y,-values of the points satisfying
(A.6) that are roots of (A.7). Also, 6 of the z,-values of the stationary points coincide with the z,-values
of the points satisfying (A.6) that are roots of (A.7). And 6 of the y,-values of the stationary points
coincide with the y-values of the points satisfying (A.5) that are roots of (A.7).

In order to prove the relations in Table 3, it remains to show that the 6 common y;-values and the

6 common z;-values form 6 common points (y;, z2). Let z; be a root of ngaf and, hence, of Pf'g]. The
corresponding y; of the stationary point is the common root given by (A.9). The corresponding y; of
the point satisfying (A.5) that is a root of (A.7) is given by an analogous expression. Equating these
two expressions for y, yields an eighth-degree polynomial in z, analogous to (A.8). We denote this
polynomial as P;°™. After some tedious analysis (or by using symbolic computation software), it can
be verified that

P®%(z,)  (eh — fg) z5 + (ah — bg + de — ¢f ) zo + (ad — bc)
Pom(z,) - (ef + gh) z% + (af + be + ch+dg) z, + (ab + cd)

Hence, P5"" and PS°™ have 6 common roots. This implies that 6 stationary points (y2, z2) are also roots
of (A.7). This completes the proof of the relations in Table 3. [J

(A16)

So far, we have shown that 6 of the 8 stationary points in the rank-1 approximation problem satisfy
A(X —Y) = 0. In Lemma A.4 below, we show that the two other stationary points (y(7),z(7)) and
(y(s), z(g)) correspond tox = 0in(2.4), whichis not a best rank-1 approximation. The global minimum
of the rank-1 approximation problem is thus attained in one of the stationary points (y(i),z(i)),i =
1,...,6.In Lemma A.5 the Proof of Theorem 4.1 is completed by showing that the multilinear rank
of X — Y equals (2, 2, 2) for these stationary points. Together with A(X — Y) = 0, this implies that
X — Yis in orbit Ds3.

Next, we consider the two stationary points (y7),z() and (y®, z®). Note that y” and y® are
the roots of the numerator of (A.15), y® and y1? are the roots of the denominator of (A.15), z2(” and
z® are the roots of the numerator of (A.14), and 29 and z19 are the roots of the denominator of
(A.14). Moreover, these four polynomials of degree 2 have identical discriminant that is equal to the
hyperdeterminant of X as given in (A.2).

Hence, if A(X) < 0, i.e. X is in orbit Gs, then the stationary points (y*”,z(”) and (y®, z®) are
complex. Since we only consider real-valued rank-1 approximations, we discard these two stationary
points. If A(X) > 0, i.e. X is in orbit G, we resort to Lemma A.4.

Lemma A4. Suppose A(X) > 0. Then the stationary points (y7,z7) and (y®, z®) in Table 3 yield
x = 0in (2.4), and do not correspond to the global minimum almost everywhere.

Proof. It can be verified that y(7) and y(s) are given by

(ah + bg — de — ¢f) &+ \/(ah + bg — de — ¢f)? — 4(df — bh)(ce — ag)
2 (df — bh)

, (A17)
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and z7 and z® are given by

—(ah —bg +de —¢f) £ \/(ah — bg + de — ¢f)? — 4(eh — fg)(ad — bc)

2 (eh — fg)
where £ is + in one stationary point and — in the other. After some tedious analysis (or by using
symbolic computation software), it can be verified that the expression for X in (2.4) is all-zero for
7,27y and (y®,z®). Hence, both stationary points yield the all-zero solution. This is not the
global minimum since the solution

=) =0 =)

yields a lower W in (2.2) whena # 0. [

, (A18)

Lemma A.5. For the stationary points (y(i),z(i)),i =1,...,6, in Table 3 the multilinear rank of X — Y
equals (2, 2, 2) almost everywhere.

Proof. [etZ=X—-Y =X — X ®Yy ® z, where x is given by (2.4), y1 = z; = 1, and (y, z») is a sta-
tionary point. If one of the frontal slabs Z; and Z; of Z is nonsingular, then the mode-1 and mode-2
ranks of Z are equal to 2. Next, we show that det(Z;) = det(Z;) = 0 corresponds to a set of measure

zero. It can be verified that

zy[—(de — bg) — (ag — bh — ce + df )y, — (ah — ¢f)y2 + (ad — bc)(1 + y3)z2]

det(z,) = (1+y3)(1+23)

(A.20)
and

(eh — f2)(1 + ¥3) + z2 [—(ah — ¢f) + (ag — bh — ce + df) y, — (de — bg) y3]
(1 +y3)(1+23)

det(Z2) =

(A21)

Suppose det(Z;) = det(Zy) = 0, i.e. the numerators of the above expressions are zero. Since z; #+
0 almost everywhere (see Lemma A.1), we divide the numerator of det(Z,) by z,. We then obtain
two equations of the form z; = s(y,)/t(y2). Equating both expressions for z, yields a fourth-degree
polynomial in y, that can be written as

[(ag — ce) y5 — (ah + bg — cf — de) y» + (bh — df)]
x [(df — bh)y3 — (ah + bg — cf — de)y, + (ce —ag)] = 0. (A22)

These two second-degree polynomials are the numerator (times —1) and denominator of (A.15). As
explained above, the roots of these polynomials are complex if A(X) < 0. In this case, it is not possible
to choose y, and z; such that det(Z,) = det(Z;) = 0. When A(X) > 0, the sought values of y, are
y(7),y(8),y(9) and y(lo). Therefore, in this case we may conclude that the points (y,,z;) for which
det(Z1) = det(Zy) = 0 are not among the first 6 stationary points in Table 3 almost everywhere.

Hence, the multilinear rank of Z equals (2, 2, ). If one of the top and bottom slabs of Z is nonsingular,
then also its mode-3 rank equals 2. A proof of this can be obtained analogous as above by interchanging
the roles of x and z. This completes the proof. [

A.1. Numerical examples

Here, we illustrate the Proof of Theorem 4.1 by means of two examples. We take two random X,
one that has A(X) > 0 (orbit G) and one that has A(X) < 0 (orbit G3).
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Our first example is

_[—0.4326 0.1253 | —1.1465 1.1892
~ |—1.6656 0.2877 1.1909 —0.0376 |

We have A(X) = 2.7668. In the table below, we list the stationary points (y,, z2), their values of
W in (2.6), their values of A(X —Y), and state whether their Hessian matrix is positive definite or
not. Two of the stationary points (y(i), z(i)), i=1,...,6, are complex. The remaining four points are
the first four points in the table, and have A(X —Y) close to zero. The second point corresponds
to the global minimum and is also found when computing a best rank-1 approximation to X via an
alternating least squares algorithm. For Z = X — Y, the matrix Z,Z; ! has a double eigenvalue 0.9185
with only one associated eigenvector. Lemma 3.1 implies that Z is in orbit D3. The last two points in
the table are the stationary points (y7), z7) and (y®, z®). From Lemma A 4 it follows that they have
AX—Y) = AX)and ¥ = ||X||*.

(A.23)

A2 Z v AX—-Y) Hessian PD
—0.592958 0.621735 5.1164 1.4166e-12 No
—0.229249 —1.08855 2.6863 9.6802e-13 Yes
2.22613 0.452035 71313 2.1210e-12 No
2.42488 —2.88759 6.5289 1.2999e-14 No
1.17156 1.15843 7.2081 2.7668 No
5.96728 —0.05296 7.2081 2.7668 No

Our second example is

x_|:—1.6041 —1.0565 | 0.8156 1.2902:|

02573  1.4151 | 0.7119 0.6686 (A.24)

We have A (X) = —2.7309. In the table below, we list the stationary points (y,, z») in the same way as
in the first example. Two of the stationary points (y(i), z(i)), i=1,...,6,arecomplex.Since A(X) < 0,
the points (v, z27) and (y®, z®)) are also complex. Hence, four real stationary points are left, that all
have A (X — Y) close to zero. The first point in the table corresponds to the global minimum and is also
found when computing a best rank-1 approximation to X via an alternating least squares algorithm.

ForZ = X — Y, the matrix ZZ; ! hasadouble eigenvalue 1.6712 with only one associated eigenvector.
Lemma 3.1 implies that Z is in orbit Ds.

V2 Z v AX—Y) Hessian PD
0.995675 —0.598339 3.1185 1.3801e-11 Yes
—0.865475 0.0601889 8.2319 1.5479e-13 No
2.06437 1.78102 6.6050 1.6050e-13 No
—0.675154 9.24487 9.0028 2.6216e-13 No

Appendix B. Proof of Theorem 7.1

We make use of the derivations in Section 5. Let X be a generic symmetric 2 x 2 x 2 tensor (6.5).
We consider the symmetric rank-1 approximation problem (5.1). It is our goal to show that, for the
optimal solutionY =y ® y ® y, we have X — Y in orbit D3. From the list of orbits in Table 2, it follows
that it suffices to show A(X —Y) = 0 and X — Y has multilinear rank (2,2,2). We will do this by
considering the stationary points of the symmetric rank-1 approximation problem.

Let Y be as in (7.2). The stationary points are given by (5.3), which can be written as

Y +y1ys + 21y — 2byiya —ay; — cy5 =0, (B1)

V3 +Yiy2 +2yiy3 — 2cyiya —dy; — byi=0. (B.2)
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Note that the entries g, b, ¢, d are nonzero almost everywhere. If one of y; and y, is zero, it follows that
both are zero almost everywhere. Since this corresponds to an all-zero Y, which is not the optimal
solution, we may assume that y; # 0 and y, # 0 almost everywhere.

Multiplying (B.2) by y1 and subtracting y, times (B.1) yields

—by} + (a — 20) 2y, + (2b — d) y1y3 + cy3 = 0. (B3)
Defining z = y1/y, and dividing (B.3) by yg, we obtain
—bz3+(a—2c)zz+(2b—d)z—|—c=0. (B.4)

This yields three solutions for z = y;/y,, two of which may be complex. For each solution z, the
corresponding stationary point (y1,y;) satisfying (B.1) and (B.2) is given by
3 az>+2bz+c b +2cz+d
=Z , = =
=2 TS aA s T At22+1
where the latter equality is equivalent to (B.4). The polynomial (B.4) determining the stationary points

is also reported by [9, Section 3.5].
Next, we consider the hyperdeterminant A(X — Y). For y; = zy», we have

(B.5)

3.3 2.3 2.3 3
X-Y= [Z ~ ; g bC _Zzyy; bc _ZZ;; Cd _Zéz]. (B.6)
Using (6.6), we obtain
AX—=Y)=AX)+f@)ys+(@—3bz+3cz? —d2®)?*ys, (B.7)
with
f(z) = [—4b® + 6abc — 2d?d] + z [6 b?*c — 12 ac® + 6 abd]
+2% [6 bc® — 12 b*d + 6 acd] + 2> [6 bed — 2 ad?] . (B.8)

We substitute the second expression for y% in (B.5) into (B.7) and multiply by (z* + 222 + 1)2. After
some tedious analysis (or by using symbolic computation software), it can be verified that this yields

(=bZ +(a—20022 +@2b—d)z+ ) P(2), (B.9)

where P(z) is a seventh-degree polynomial in z. By (B.4), the expression (B.9) is identical to zero. Hence,
for all three stationary points (y1, y2), we have A(X —Y) = 0.

In the final part of the proof, we show that X — Y has multilinear rank (2, 2, 2) almost everywhere.
Since the mode-n ranks of symmetric tensors are equal for each mode, it suffices to show that the two
slabs of (B.6) are nonsingular almost everywhere. Let Z = X — Y. We have

det(Z;) = (ac — b?) +y§ (—cZ2+2b2* —az), (B.10)

det(Zy) = (bd — c*) +y3(—dz* +2cz—b). (B.11)
Hence, det(Z) = det(Z,) = 0 implies

(bd — c*)(cz> —2bz* +az) + (ac — b*)(dz*> —2cz+b) =0, (B.12)
which can be written as

22 [bed — 31+ 22 [2bc? + acd — 3 b?d] + z[2 b?c + abd — 3ac®] + [abc — b*] = 0. (B.13)

Since the third-degree polynomials (B.4) and (B.13) do not have generically common roots, it follows
that at least one of the slabs Z; and Z, is nonsingular almost everywhere. As explained above, this
implies that X — Y has multilinear rank (2, 2,2) almost everywhere. This completes the Proof of
Theorem 7.1.
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Appendix C. Orbits D3 and G3 of real symmetric 2 x 2 x 2 tensors

Here, we show that any real symmetric 2 X 2 x 2 tensor X in orbit D3 or Gs is related to the
canonical form Y of the orbit by an invertible multilinear transformation (§,S,S) - Y = X.

First, we consider orbit D3, which is defined by symmetric rank 3, multilinear rank (2,2,2), and
hyperdeterminant A = 0. It follows from the Proof of Proposition 6.3 that we may assume without
loss of generality that X in orbit D3 has the form

a 1|1 1
X= [1 1 ‘ 1 d]' (C1)
with
A(X) = a’d®> —6ad +4a+4d —3=0. (C2)
Our goal is to find a nonsingular
_ 51 s2
S = [53 54}, (C3)

such that (S, S,S) - Y = X, where the canonical form Y of orbit D5 is given in Table 2, i.e.
0o 11 0 a 1|1 1
§5.5)- [1 0 ‘ 0 0]=[1 1 ‘ 1 d]' (C4)
This yields the following four equations:

35%52 =a, 35%54 =d, (C5)

5%54 + 251553 =1, szs§ + 2515354 = 1. (C.6)

Note that the casea = d = 1 has A = 0butyields multilinear rank (1, 1, 1) and, hence, is not included
in orbit D3. The case a = 0, d = 3/4 is in orbit D3 and its solution of (C.5) and (C.6) is

s=[% °] -

The case a = 3/4,d = 0 can be treated analogously. In the remaining part of the proof we assume
a # 0 and d # 0. This implies that all entries of S are nonzero. From (C.2) it follows that

3a—2+£2(1 —a)/1—a
d= o .
Hence, we must have a < 1. Since (C.2) is symmetric in a and d, also d < 1 must hold.

Next, we solve the system (C.5) and (C.6). From (C.5) we get s, = a/(3 s%) and s, =d/(3 s%).
Substituting this into (C.6) yields, after rewriting,

d /s51\3 51 2a d /s1\3 1 /s1\2 a
LE-()-2 Lt
3 S3 S3 3 3 S3 2 S3 6

We equate the right-hand sides of (C.9), which yields

(C.8)

s
<i> —14+/1—a. (C.10)
S3
Substituting this into one equation of (C.9) gives us
3—2a+3J1—a
d= - (C11)
(1+vT—a)

It can be verified that this expression for d is identical to (C.8). Hence, Eq. (C.10), together with s, =
a/(3 S%) andsy =d/(3 s%), solves the system (C.5) and (C.6). Note that since both tensors in (C.4) have
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multilinear rank (2,2,2), it follows that S is nonsingular. Hence, we have shown that for any X in orbit

D3 there exists a nonsingular S such that (S,S,S) - Y = X, where Y is the canonical form of orbit Ds.
Next, we consider orbit G3, which is defined by symmetric rank 3, multilinear rank (2,2,2), and

hyperdeterminant A < 0. As above, we may assume that X in G3 has the form (C.1) with

AX) = a®d®> —6ad + 4a+4d —3 < 0. (C12)

It is our goal to find nonsingular S in (C.7) such that

—1 0]0 11 [a 1|1 1
(S'S'S)'[o 11 O]z[l 11 d]’ (C13)

where the former tensor is the canonical form of orbit G3 as given in Table 2. This yields the following
four equations:

—s3 435155 =a, —s3+3s355=d, (C14)

—5%53 + 2515254 + 5553 =1, —515§ + 2525354 + 515421 =1. (C15)

The case a=0,d < 3/4 has solution s; = 0,53 =3/4—d >0, s3 =1/s3,53 = 1/(4s3), with
det(S) = —./s3 < 0. The case a < 3/4,d = 0 can be treated analogously. In the remaining part of
the proof we assume a # 0and d # 0. This implies that s; and s3 are nonzero. Note that a = 1 implies
A = (d — 1)?, which is not in orbit G3. Analogously, d = 1 is not in orbit G either. In fact, A < 0
impliesa < 1andd < 1.

Next, we solve the system (C.14) and (C.15). Expressions for s, and s4 are obtained from (C.14) as

3 3
sT4a ss+d
ss="1 - 2=5"_ (C.16)
35 353
Eq. (C.15) can be written as
1+ s?s3 — s2s 1+ 5952 — 5152
2sysy = ——12 2B gg g = 13 T (C17)
S1 S3

Equating the right-hand sides and substituting (C.16) yields, after rewriting,

d (2)3 _3 (2)2 +3 (j—;) —a=o0. (C18)

The discriminant of this third-degree polynomial equals —27A > 0, which implies that (C.18) has
three distinct real roots. Let sy = « s3, where the root « satisfies

de® =30 -3a+a. (C.19)
Substituting s; = « s3 and (C.16) into the first equation of (C.15) yields
4s§ (da*+2aa —3a®) =9 —6a/a + a*/o® —dada . (C.20)

Using (C.19), this can be rewritten as
a(3—da)? —4ad
12@?—-2a+a)

It remains to verify that the expressions (C.16) are nonnegative. Our proof is tedious and long. Below,
we give a summary of it. The full proof is available on request.

Substituting (C.21) and using (C.19), it can be shown that the expressions (C.16) are nonnegative if

Pi(@) =a?(4—3d)+a(ad—3)+a>0, Py(a)=—-do’+a(B—ad) —a>0. (C22)
Note that P; + P, = 4a? (1 — d) > 0. Also, the leading coefficient of P; is always positive. The roots
of Py are given by
_ 3 —ad— va?d? 4 6ad — 160+ 9 _ 3 —ad+ va?d? 4 6ad — 16a + 9

rn = , Ty =
2(4—3d) 2(4—3d)

3 _
3 =

(C.21)

(C23)
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The roots of P, are given by

ad — 3 — v/a?d? — 10ad + 9 ad — 3 + +/a?d* — 10ad + 9
R = , I'qg = .
3 —2d ‘ —2d
Let P3(x) = dx®> — 3x*> + 3x — a. To prove (C.22), we focus on the sign of P3 in the roots rq, 5, 13, I4.
When the discriminant of P; is nonnegative, we can distinguish three cases. In these cases, the sign of
P3 in the roots r; and r;, is as follows:

(C24)

casel: a>0 and a’d > —3a+ 4ay/a = P3(r1) =0 P3(ry) >0, (C.25)
casell: a>0 and a’d < —3a— 4a/a = P3(r1) <0 P3(r) <0, (C.26)
caselll: a < 0= P3(r;) >0 P3(rp)=0. (C.27)

When the discriminant of P is nonnegative, we have

>0 if d>0,
P3(r4) <0, P3(r3) {S 0 ifd<o. (C.28)

Suppose d > 0. Then the leading coefficient of P, is negative and its discriminant is positive (since
a < 1and d < 1). Hence, P, has real roots. Recall that the leading coefficient of P; is always positive.
Suppose the roots of P are real. Then we are in case I or case III (since case Il implies d < 0). Since
Py + Py > 0, there must hold r4 <y <1y <r3. From (C.25), (C.27), and (C.28), it follows that P3 has a
root « in the interval [ry, r1] for which (C.22) holds. If the roots of P; are not real, then (C.28) implies
that P3 has a root « in the interval [ry4, r3] for which (C.22) holds.

Suppose next that d < 0. Then the leading coefficients of P; and P, are positive. Suppose P; and
P, both have real roots. Since P; 4+ P, > 0, there must hold eitherr3 <rg <ry <ryorr; <ry <r3<ry.
From (C.25) to (C.28) we obtain the following. Suppose we are in case [ or case IIl. If r3 <rq <11 <17,
then P3 has a root « in the interval [ry4, r1] for which (C.22) holds. If r{ <1y <13 <14, then P3 has a
root « in the interval [ry, r3] for which (C.22) holds. Suppose we are in case II. Then P5(r3) <0 and
P3(r1) <0. From the shape of P3 it follows that it has aroot o <r3 if r3 <r4 <r; <ry,orarooto <ry if
r1 <1y <13 <14.In both situations, we have (C.22) for this root «.

Whend < 0and P; does not have real roots, (C.28) implies that P3 has a root « < r3 for which (C.22)
holds. When d < 0 and P, does not have real roots, (C.25)-(C.27) imply that P3 cannot have all three
roots in the interval [r, 12 ]. Hence, there exists a root « for which (C.22) holds. Finally, it can be shown
that P; and P, cannot both have complex roots whena < 1andd < 1.

Hence, we have shown that the system (C.14) and (C.15) is solved by (C.16), (C.21), and s = « s3,
where « is a root of P3 satisfying (C.22). In numerical experiments we found that any root of P3
satisfies (C.22). Note that since both tensors in (C.13) have multilinear rank (2,2,2), it follows that S is
nonsingular. Hence, we have shown that for any X in orbit G3 there exists a nonsingular S such that
(S,S,S) - Y = X, where Y is the canonical form of orbit G3.
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